European Environment Ageny, (2020). Health impacts of air
pollution, last modified 28 Jan 2020, https://www.eea.
europa.eu/themes/air/health-impacts-of-air-pollution
Fenner, M.E. (2020). Machine Learning with Python for
Everyone, Pearson Education Inc.
German Federal Environment Agency (2021). Benzene is an
organic, chemical compound with an aromatic odour. It
is carcinogenic and a content of petrol.
https://www.umweltbundesamt.de/en/topics/air/air-
pollutants-at-a-glance/benzene#emission-sources
Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.,
Schmidhuber, J. (2016). LSTM: a search space odyssey,
IEEE Trans. Neural Netw. Learn. Syst., 28 (10), pp.
2222-2232.
Guneri, A.F., Ertay, T., Yücel, Y. (2011). An approach
based on ANFIS input selection and modeling for
supplier selection problem, Expert Systems with
Applications, 38, 14907-14917.
Hochreiter, S., Schmidhuber, J. (1997). Long Short-term
Memory. Neural Computation, 9 (8): 1735-80.
DOI:10.1162/neco.1997.9.8.1735.
Humpe, A., Brehm, L., Günzel, H. (2021). Forecasting Air
Pollution in Munich: A Comparison of MLR, ANFIS,
and SVM, in Proceedings of the 13th International
Conference on Agents and Artificial Intelligence -
Volume 2: ICAART, ISBN 978-989-758-484-8, pages
500-506. DOI: 10.5220/0010184905000506
Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy
inference system, IEEE Transactions on Systems, Man,
and Cybernetics, 23 (3), 665-685, doi: 10.1109/
21.256541.
Karakitsios, S.P., Papaloukas, C.L., Kassomenos, P.A.,
Pilidis, G.A. (2006). Assestment and prediction of
benzene concentration in a street canyon using artificial
neural networks and deterministic models. Their
response to “what if” scenarios”, Ecological Modelling,
193, pp. 253-270.
Kaur M., Mandal, A. (2020). PM2.5 Concentration
Forecasting using Neural Networks for Hotspots of Delhi,
International Conference on Contemporary Computing
and Applications (IC3A), Lucknow, India, 2020, pp. 40-
43, doi: 10.1109/IC3A48958.2020.233265.
Krzyzanowski, M., Kuna-Dibbert, B., Schneider, J. (2005).
Health effects of transport-related air pollution, WHO
Library Cataloguing in Publication Data, ISBN 91-890-
1373-7.
Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel,
O., Filliger, P., Herry, M., Jr. Horak, F., Puybonnieux-
Texier, V., Quénel, P., Schneider, J., Seethaler, R.,
Vergnaud, J.C., Sommer, H. (2000) Public-health
impact of outdoor and traffic-related air pollution: a
European assessment, Lancet, 356(9232), 795-801. doi:
10.1016/S0140-6736(00)02653-2, PMID: 11022926.
Le X-H, Ho HV, Lee G, Jung S. (2019). Application of Long
Short-Term Memory (LSTM) Neural Network for Flood
Forecasting. Water 11(7): 1387. https://doi.org/10.3390/
w11071387
Lee, C.Y., Lee, Z.J., Huang, J.Q., Ye, F.L., Ning, Z.Y.,
Yang, C.F. (2019). Urban Air Quality Analysis and
Forecast Based on Intelligent Algorithm with Parameter
Optimization and Decision Rules, Applied Sciences, 9,
5445.
Loya, N., Pineda, I.O., Pinto, D., Gomez-Adorno, H.,
Aleman, Y. (2012). Forecast of Air Quality Based on
Ozone by Decision Trees and Neural Networks,
Mexican International Conference on Artificial
Intelligence (MICAI), in: I. Batyrshin, M. González
Mendoza (eds) Advances in Artificial Intelligence,
MICAI 2012, Lecture Notes in Computer Science, 2013,
vol 7629, pp. 97-106, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-37807-2_9
Ly, H.B., Le, L.H., Phi, L.V., Phan, V.H., Tran, V.Q., Pham,
B.T., Le, T.T., Derrible, S. (2019). Development of an
AI Model to Measure Trafic Air Pollution from
Multisensor and Weather Data, Sensors, 19 (22), 4941,
DOI: 10.3390/s19224941
Mihalache, S.F., Popescu, M. (2016). Development of
ANFIS Models for PM Short-term Prediction, Case
Study, 8th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), Ploiesti,
pp. 1-6, doi: 10.1109/ECAI.2016.7861073.
Molina-Cabello, M.A., Passow, B., Domínguez, E.,
Elizondo, D., Obszynska, J. (2019). Infering Air Quality
from Traffic Data Using Transferable Neural Network
Models, in: Advances in Computational Intelligence,
15th International Work-Conference on Artificial
Neural Networks, IWANN 2019, Gran Canaria, Spain,
June 12-14, 2019, Proceedings, Part I, pp.832-843, DOI:
10.1007/978-3-030-20521-8_68.
Oprea M., Popescu, M., Mihalache, S., Dragomir, E. (2017).
Data Mining and ANFIS Application to Particulate
Matter Air Pollutant Prediction. A Comparative Study,
in Proceedings of the 9th International Conference on
Agents and Artificial Intelligence, Volume 1: ICAART,
ISBN 978-989-758-220-2, pages 551-558. DOI:
10.5220/0006196405510558
Pawlak, I., Jaroslawski, J. (2019). Forecasting of Surface
Ozone Concentration by Using Artificial Neural
Networks in Rural and Urban Areas in Central Poland,
Atmosphere, 10, 52.
Quej, V.H., Almorox, J., Arnaldo, J.A., Saito, L., (2017).
ANFIS, SVM and ANN soft-computing techniques to
estimate daily global solar radiation in a warm sub-
humid environment, Journal of Atmospheric and Solar-
Terrestrial Physics, Volume 155, Pages 62-70,
https://doi.org/10.1016/j.jastp.2017.02.002.
Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., Jung, J.
(2020). Using a deep convolutional neural network to
predict 2017 ozone concentrations, 24 hours in advance,
Neural Networks, Vol. 121, pp. 396-408.
Smith, M.T. (2010). Advances in understanding benzene
health effects and susceptibility, Annu. Rev. Public
Health, 31:133–148. doi: 10.1146/annurev.publ
health.012809.103646.
Studenmund, A.H., (2001). Using Econometrics: A practical
guide, Addison Wesley Longman Inc.
Sugeno, M., (1985). Industrial Applications of Fuzzy Control,
Elsevier Science Inc., ISBN: 978-0-444-87829-8
Takagi, T., Sugeno, M. (1983). Derivation of fuzzy control
rules from human operator’s control actions, Proc IFAC