Fragopanagos, N., & Taylor, J. G. (2005). Emotion
recognition in human–computer interaction. Neural
Networks, 18(4), 389-405.
Huang, A., & Bao, P. (2019). Human Vocal Sentiment
Analysis. NYU Shanghai CS Symposium,
arXiv:1905.08632.
Huang, K.-Y., Wu, C.-H., Hong, Q.-B., Su, M.-H., & Chen,
Y.-H (2019). Speech emotion recognition using deep
neural network considering verbal and nonverbal
speech sounds. IEEE International Conference on
Acoustics, Speech & Signal Processing, pp.5866-5870)
Kerkeni, L., Serrestou, Y., Mbarki, M., Raoof, K.,
Mahjoub, M. A., & Cleder, C. (2019). Automatic
Speech Emotion Recognition Using Machine Learning.
In Social Media and Machine Learning: IntechOpen.
DOI: 10.5772/intechopen.84856
Kim, Y., & Provost, E. M. Emotion classification via
utterance-level dynamics: A pattern-based approach to
characterizing affective expressions. In 2013 IEEE
International Conference on Acoustics, Speech and
Signal Processing, 2013, pp. 3677-3681
Kingma, D. P., & Ba, J. Adam (2015): A method for
stochastic optimization. International Conference for
Learning Representations.
Koolagudi, S. G., & Rao, K. S. (2012). Emotion recognition
from speech: a review. International Journal of Speech
Technology, 15(2), 99-117.
Kwon, O.-W., Chan, K., Hao, J., & Lee, T.-W (2003).
Emotion recognition by speech signals. European
Conference on Speech Communication and
Technology
Lalitha, S., Geyasruti, D., Narayanan, R., & Shravani, M.
(2015). Emotion detection using MFCC and cepstrum
features. Procedia Computer Science, 70, 29-35.
Lee, C.-C., Mower, E., Busso, C., Lee, S., & Narayanan, S.
(2011). Emotion recognition using a hierarchical binary
decision tree approach. Speech Communication, 53(9-
10), 1162-1171.
Livingstone, S. R., & Russo, F. A. J. P. o. (2018). The
Ryerson Audio-Visual Database of Emotional Speech
and Song: A dynamic, multimodal set of facial and
vocal expressions in North American English. PLoS
ONE, 13(5):e0196391.
Mannepalli, K., Sastry, P. N., Suman, M. J. (2018).
Emotion recognition in speech signals using
optimization based multi-SVNN classifier. Journal of
King Saud University-Computer and Information
Sciences, https://doi.org/10.1016/j.jksuci.2018.11.012.
Mu, Y., Gómez, L. A. H., Montes, A. C., Martínez, C. A.,
Wang, X., Gao, H. et al. (2017). Speech emotion
recognition using convolutional-recurrent neural
networks with attention model. DEStech Transactions
on Computer Science and Engineering. pp. 341-350
Muda, L., Begam, M., & Elamvazuthi, I. J. a. p. a. (2010).
Voice recognition algorithms using mel frequency
cepstral coefficient (MFCC) and dynamic time warping
techniques. Journal of Computing, 2(3), 138-143.
Noroozi, F., Kaminska, D., Sapinski, T., & Anbarjafari, G.
(2017). Supervised vocal-based emotion recognition
using multiclass support vector machine, random
forests, and adaboost. Journal of Audio Engineering
and Society, 65(7/8), 562-572.
Pérez-Rosas, V., Mihalcea, R., & Morency, L.-P.
Utterance-level multimodal sentiment analysis. The
51
st
Annual Meeting of the Association for
Computational Linguistics, Volume 1, 2013 (pp. 973-
982)
Satt, A., Rozenberg, S., & Hoory (2017), R. Efficient
Emotion Recognition from Speech Using Deep
Learning on Spectrograms. Interspeech, pp. 1089-1093
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K.,
& Woo, W.-c (2015). Convolutional LSTM network: A
machine learning approach for precipitation
nowcasting. International Conference on Neural
Information Processing Systems, pp. 802-810.
Vinola, C., Vimaladevi, K. (2015). A survey on human
emotion recognition approaches, databases and
applications. ELCVIA: electronic letters on computer
vision and image analysis, 14(2), 24-44.
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K.
(2018). Convolutional neural networks: an overview
and application in radiology. Insights into Imaging,
9(4), 611-629.
Zhao, J., Mao, X., Chen, L. (2019). Speech emotion
recognition using deep 1D & 2D CNN LSTM networks.
Biomedical Signal Processing & Control, 47, 312-323.
Zheng, W., Yu, J., & Zou, Y (2015). An experimental study
of speech emotion recognition based on deep
convolutional neural networks. International
conference on affective computing and intelligent
interaction, pp. 827-831)