retinal images based on convolutional kernels and
modified u-net model. Computer Methods and
Programs in Biomedicine, 205, 106 081.
Jain, A., Yadav, D., and Arora, A. (2021). Particle swarm
optimization for Punjabi text summarization.
International Journal of Operations Research and
Information Systems (IJORIS), 12(3): 1-17. IGI Global.
Jebaseeli, T. J., Durai, C. A. D., and Peter, J. D. (2019).
Segmentation of retinal blood vessels from
ophthalmologic diabetic retinopathy images.
Computers & Electrical Engineering, 73: 245-258.
Marın, D., Aquino, A., Gegu´ndez-Arias, M. E., and Bravo,
J. M. (2010). A new supervised method for blood vessel
segmentation in retinal images by using gray-level and
moment invariants-based features. IEEE Transactions
on Medical Imaging, 30(1): 146–158.
Moccia, S., Momi, E. De., Hadji, S. El., and Leonardo, S.
(2018). Mattos Blood vessel segmentation algorithms-
Review of methods, datasets and evaluation metrics.
Computer Methods and Programs in Biomedicine,
158: 71-91.
Noh, K. J., Park, S. J., and Lee, S. (2019). Scale-space
approximated convolutional neural networks for retinal
vessel segmentation. Computer Methods and Programs
in Biomedicine, 178: 237-246.
Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J.
Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., and
Angelopoulou, E. (2013). Retinal vessel segmentation
by improved matched filtering: Evaluation on a new
high-resolution fundus image database. IET Image
Processing, 7(4): 373–383.
Rajagopalan, N., Venkateswaran, N., Josephraj, A. N., and
Srithaladevi, E. (2021). Diagnosis of retinal disorders
from optical coherence tomography images using
CNN. PLOS One, 16(7), e0254180.
Saroj, S. K., Kumar, R., and Singh, N. P. (2020). Frechet
pdf based matched filter approach for retinal blood
vessels segmentation. Computer Methods and
Programs in Biomedicine, 194, 105 490.
Siddiqui, F., Gupta, S., Dubey, S., Murtuza, S., and Jain, A.
(2020). Classification and diagnosis of invasive ductal
carcinoma using deep learning. In Proceedings of the
10th International Conference on Cloud Computing,
Data Science & Engineering (CONFLUENCE 2020),
242-247. IEEE.
Singh, N. P. and Srivastava, R. (2016). Segmentation of
retinal blood vessels by using a matched filter based on
second derivative of Gaussian. International
Journal of Biomedical Engineering and Technology,
21(3): 229-246.
Soomro, T. A., Khan, T. M., Khan, M. A., Gao, J., Paul, M.,
and Zheng, L. (2018). Impact of ICA-based image
enhancement technique on retinal blood vessels
segmentation. IEEE Access, 6, 3524-3538.
Soomro, T. A., Afifi, A. J., Shah, A. A., Soomro, S., Baloch,
G. A., Zheng, L., Yin, M., and Gao, J. (2019). Impact
of image enhancement technique on CNN model for
retinal blood vessels segmentation. IEEE Access, 7,
158183-158197.
Sreejini, K., and Govindan, V. (2015). Improved multiscale
matched filter for retina vessel segmentation using PSO
algorithm. Egyptian Informatics Journal, 16(3): 253-
260.
Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M.
A., and Ginneken, B. Van. (2004). Ridge-based vessel
segmentation in color images of the retina. IEEE
Transactions on Medical Imaging, 23(4): 501-509.
Sun, J., Wan, C., Cheng, J., Yu, F., and Liu, J. (2017).
Retinal image quality classification using fine-tuned
CNN. In Fetal, Infant and Ophthalmic Medical Image
Analysis, pp. 126-133. Springer.
Wang, X., Jiang, X., and Ren, J. (2019). Blood vessel
segmentation from fundus image by a cascade
classification framework. Pattern Recognition,
88: 331-341.
Yao, Z., Zhang, Z., and Xu, L. Q. (2016). Convolutional
neural network for retinal blood vessel segmentation. In
Proceedings of the 9th International Symposium on
Computational Intelligence and Design (ISCID), 1:
406-409. IEEE.
END NOTES
i
Facts & Figures: Accessed on Feb 2021.
https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-
figures.html