System (IAPS). Psychiatry Research, 251, 192–196.
https://doi.org/10.1016/j.psychres.2017.02.025
Di Flumeri, G., Borghini, G., Aricò, P., Sciaraffa, N., Lanzi,
P., Pozzi, S., … Babiloni, F. (2018). EEG-Based
Mental Workload Neurometric to Evaluate the Impact
of Different Traffic and Road Conditions in Real
Driving Settings. Frontiers in Human Neuroscience,
12, 509. https://doi.org/10.3389/fnhum.2018.00509
Fiorini, L., Mancioppi, G., Semeraro, F., Fujita, H., &
Cavallo, F. (2020). Unsupervised emotional state
classification through physiological parameters for
social robotics applications. Knowledge-Based
Systems, 190, 105217. https://doi.org/10.1016/
j.knosys.2019.105217
Flagler, T., Tong, J., Allison, R. S., & Wilcox, L. M. (2020).
Validity Testing the NeuLog Galvanic Skin Response
Device. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2020-Octob, 3964–3968.
https://doi.org/10.1109/ SMC42975.2020.9283465
Gatti, E., Calzolari, E., Maggioni, E., & Obrist, M. (2018).
Data Descriptor: Emotional ratings and skin
conductance response to visual, auditory and haptic
stimuli. Scientific Data, 5(1), 1–12. https://doi.org/
10.1038/sdata.2018.120
Giorgi, A., Ronca, V., Vozzi, A., Sciaraffa, N., di Florio,
A., Tamborra, L., … Borghini, G. (2021). Wearable
Technologies for Mental Workload, Stress, and
Emotional State Assessment during Working-Like
Tasks: A Comparison with Laboratory Technologies.
Sensors, 21(7), 2332. https://doi.org/10.3390/
s21072332
Girardi, D., Lanubile, F., & Novielli, N. (2018). Emotion
detection using noninvasive low cost sensors. 2017 7th
International Conference on Affective Computing and
Intelligent Interaction, ACII 2017, 2018-Janua, 125–
130. https://doi.org/10.1109/ACII.2017.8273589
Guo, H. W., Huang, Y. S., Lin, C. H., Chien, J. C.,
Haraikawa, K., & Shieh, J. S. (2016). Heart Rate
Variability Signal Features for Emotion Recognition by
Using Principal Component Analysis and Support
Vectors Machine. Proceedings - 2016 IEEE 16th
International Conference on Bioinformatics and
Bioengineering, BIBE 2016, 274–277. https://
doi.org/10.1109/BIBE.2016.40
Gupta, N., Rawal, A., Narasimhan, V. L., & Shiwani, S.
(n.d.). Accuracy, Sensitivity and Specificity
Measurement of Various Classification Techniques on
Healthcare Data.
Hameed, R. A., Sabir, M. K., Fadhel, M. A., Al-Shamma,
O., & Alzubaidi, L. (2019). Human emotion
classification based on respiration signal. ACM
International Conference Proceeding Series, 239–245.
https://doi.org/10.1145/3321289.3321315
Hernández-Orallo, J., & Flach PETERFLACH, P. (2012).
A Unified View of Performance Metrics: Translating
Threshold Choice into Expected Classification Loss C`
esar Ferri. In Journal of Machine Learning Research
(Vol. 13).
Ji, Q., & Yang, X. (2002). Real-time eye, gaze, and face
pose tracking for monitoring driver vigilance. Real-
Time Imaging, 8(5), 357–377. https://doi.org/10.1006/
rtim.2002.0279
Kantono, K., Hamid, N., Shepherd, D., Lin, Y. H. T.,
Skiredj, S., & Carr, B. T. (2019). Emotional and
electrophysiological measures correlate to flavour
perception in the presence of music. Physiology and
Behavior, 199, 154–164. https://doi.org/10.1016/
j.physbeh.2018.11.012
Kappal, S. (2019). Data Normalization using Median &
Median Absolute Deviation (MMAD) based Z-Score for
Robust Predictions vs. Min-Max Normalization.
King, D. E. (2009). Dlib-ml: A Machine Learning Toolkit.
In Journal of Machine Learning Research (Vol. 10).
Lang, P., Bradley, M., & Cuthbert, B. (2008). International
affective picture system (IAPS): Affective ratings of
pictures and instruction manual.
Laureanti, R., Bilucaglia, M., Zito, M., Circi, R., Fici, A.,
Rivetti, F., Russo, V. (2020). Emotion assessment using
Machine Learning and low-cost wearable devices.
Proceedings of the Annual International Conference of
the IEEE Engineering in Medicine and Biology Society,
EMBS, 2020-July, 576–579. https://doi.org/10.1109/
EMBC44109.2020.9175221
Moharreri, S., Dabanloo, N. J., & Maghooli, K. (2018).
Modeling the 2D space of emotions based on the
poincare plot of heart rate variability signal.
Biocybernetics and Biomedical Engineering, 38(4),
794–809. https://doi.org/10.1016/j.bbe.2018.07.001
Ragot, M., Martin, N., Em, S., Pallamin, N., & Diverrez, J.
M. (2018). Emotion recognition using physiological
signals: Laboratory vs. wearable sensors. Advances in
Intelligent Systems and Computing, 608, 15–22. https://
doi.org/10.1007/978-3-319-60639-2_2
Rahman, H., Ahmed, M. U., & Begum, S. (2020). Non-
Contact Physiological Parameters Extraction Using
Facial Video Considering Illumination, Motion,
Movement and Vibration. IEEE Transactions on
Biomedical Engineering, 67(1), 88–98. https://doi.org/
10.1109/TBME.2019.2908349
Rahman, H., Uddin Ahmed, M., Begum, S., & Funk, P.
(n.d.). Real Time Heart Rate Monitoring From Facial
RGB Color Video Using Webcam. Retrieved from
http://stressmedicin.se/neuro-psykofysilogiska-
matsystem/cstress-
Robb, C. E., de Jager, C. A., Ahmadi-Abhari, S.,
Giannakopoulou, P., Udeh-Momoh, C., McKeand, J.,
Middleton, L. (2020). Associations of Social Isolation
with Anxiety and Depression During the Early COVID-
19 Pandemic: A Survey of Older Adults in London,
UK. Frontiers in Psychiatry, 11. https://doi.org/
10.3389/fpsyt.2020.591120
Ronca, V., Giorgi, A., Rossi, D., Di Florio, A., Di Flumeri,
G., Aricò, P., … Borghini, G. (2021). A Video-Based
Technique for Heart Rate and Eye Blinks Rate
Estimation: A Potential Solution for Telemonitoring
and Remote Healthcare. Sensors, 21(5), 1607. https://
doi.org/10.3390/s21051607
Ronca, V., Rossi, D., Di Florio, A., Di Flumeri, G., Aricò,
P., Sciaraffa, N., … Borghini, G. (2020). Contactless
Physiological Assessment of Mental Workload During