el MENDILI, S. (2020). Towards a Reference Big Data
architecture for sustainable smart cities. International
Journal of Advanced Trends in Computer Science and
Engineering, 9(1), 820–827.
https://doi.org/10.30534/ijatcse/2020/118912020
Engelberg, J. (2008). Costly Information Processing:
Evidence from Earnings Announcements. SSRN
Electronic Journal. Published.
https://doi.org/10.2139/ssrn.1107998
Federal Reserve Economic Data | FRED | St. Louis Fed.
(2015). Federal Reserve. https://fred.stlouisfed.org
Ferris, S. P., Hao, G. Q., & Liao, S. M. Y. (2012). The
Effect of Issuer Conservatism on IPO Pricing and
Performance*. Review of Finance, 17(3), 993–1027.
https://doi.org/10.1093/rof/rfs018
Feuerriegel, S., Ratku, A., & Neumann, D. (2016). Analysis
of How Underlying Topics in Financial News Affect
Stock Prices Using Latent Dirichlet Allocation. 2016
49th Hawaii International Conference on System
Sciences (HICSS). Published.
https://doi.org/10.1109/hicss.2016.137
Financial performance data. (2015). FP DATA.
http://www.ic.gc.ca/eic/site/pp-pp.nsf/eng/home
Galeshchuk, S., & Mukherjee, S. (2017). Deep networks for
predicting direction of change in foreign exchange
rates. Intelligent Systems in Accounting, Finance and
Management, 24(4), 100–110.
https://doi.org/10.1002/isaf.1404
Ghiassi, M., Skinner, J., & Zimbra, D. (2013). Twitter
brand sentiment analysis: A hybrid system using n-
gram analysis and dynamic artificial neural network.
Expert Systems with Applications, 40(16), 6266–6282.
https://doi.org/10.1016/j.eswa.2013.05.057
Gilman, R. C. (1968). The General Inquirer: A Computer
Approach to Content Analysis.Philip J. Stone , Dexter
C. Dunphy , Marshall S. Smith , Daniel M. Ogilvie.
American Journal of Sociology, 73(5), 634–635.
https://doi.org/10.1086/224539
Harris, Z. S. (1954). Distributional Structure. WORD,
10(2–3), 146–162.
https://doi.org/10.1080/00437956.1954.11659520
Hautsch, N., Schaumburg, J., & Schienle, M. (2014).
Financial Network Systemic Risk Contributions.
Review of Finance, 19(2), 685–738.
https://doi.org/10.1093/rof/rfu010
Henry, E., & Leone, A. J. (2009). Measuring Qualitative
Information in Capital Markets Research. SSRN
Electronic Journal. Published.
https://doi.org/10.2139/ssrn.1470807
IMF Data. (2015). IMF. https://www.imf.org/en/Data
Interest Rates. (2015). Bank of Canada.
https://www.bankofcanada.ca/rates/interest-rates/
Jangid, H., Singhal, S., Shah, R. R., & Zimmermann, R.
(2018). Aspect-Based Financial Sentiment Analysis
using Deep Learning. Companion of the The Web
Conference 2018 on The Web Conference 2018 -
WWW ’18. Published.
https://doi.org/10.1145/3184558.3191827
Karaoglu, S., & Arpaci, U. (2017). A Deep Learning
Approach for Optimization of Systematic Signal
Detection in Financial Trading Systems with Big Data.
International Journal of Intelligent Systems and
Applications in Engineering, Special Issue(Special
Issue), 31–36.
https://doi.org/10.18201/ijisae.2017specialissue31421
Kearney, C., & Liu, S. (2013). Textual Sentiment Analysis
in Finance: A Survey of Methods and Models. SSRN
Electronic Journal. Published.
https://doi.org/10.2139/ssrn.2213801
Kim, K. H., Lee, C. S., Jo, S. M., & Cho, S. B. (2015).
Predicting the success of bank telemarketing using deep
convolutional neural network. 2015 7th International
Conference of Soft Computing and Pattern Recognition
(SoCPaR). Published.
https://doi.org/10.1109/socpar.2015.7492828
Landauer, T. K., & Dumais, S. T. (1997). A solution to
Plato’s problem: The latent semantic analysis theory of
acquisition, induction, and representation of
knowledge. Psychological Review, 104(2), 211–240.
https://doi.org/10.1037/0033-295x.104.2.211
Lee, J., Jang, D., & Park, S. (2017). Deep Learning-Based
Corporate Performance Prediction Model Considering
Technical Capability. Sustainability, 9(6), 899.
https://doi.org/10.3390/su9060899
Li, N., Liang, X., Li, X., Wang, C., & Wu, D. D. (2009).
Network Environment and Financial Risk Using
Machine Learning and Sentiment Analysis. Human and
Ecological Risk Assessment: An International Journal,
15(2), 227–252.
https://doi.org/10.1080/10807030902761056
LOUGHRAN, T., & MCDONALD, B. (2011). When Is a
Liability Not a Liability? Textual Analysis,
Dictionaries, and 10-Ks. The Journal of Finance, 66(1),
35–65. https://doi.org/10.1111/j.1540-
6261.2010.01625.x
Mbadi, S. (2018). Predicting Stock Market Movement
Using an Enhanced Naïve Bayes Model for Sentiment
Analysis Classification
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv:1301.3781 [cs].
http://arxiv.org/abs/1301.3781
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean,
J. (2013). Distributed representations of words and
phrases and their compositionality. arXiv:1310.4546
[cs, stat]. http://arxiv.org/abs/1310.4546
Mitra, G., & Mitra, L. (2011). The Handbook of News
Analytics in Finance (1st ed.). Wiley.
Natural language processing tested in the investment
process through new partnership | J.P. Morgan. (2018).
J.P. Morgan. https://www.jpmorgan.com/news/natural-
language-processing-tested-in-the-investment-process-
through-new-partnership?source=cib_di_jp_mal0418
Ozik, G., & Sadka, R. (2012). Media and Investment
Management. SSRN Electronic Journal. Published.
https://doi.org/10.2139/ssrn.1633705
Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., & Zettlemoyer, L. (2018). Deep
Contextualized Word Representations. Proceedings of
the 2018 Conference of the North American Chapter of