The model performance criteria for the learning
phase (Possess 70% of all data), the test phase
(Possess 15% of all data), and the validation phase
(Possess 15% of all data) are 0.23 for the ASE, and
0.83 for the 𝑅
, which is the coefficient of the
determination given by the below formula:
𝑅
2
1
∑
𝑄
𝑖
𝑄
𝑖
2
𝑁
𝑖1
∑
𝑄
𝑖
𝑄
𝑖
2
𝑁
𝑖1
13
Where 𝑄
𝑖
is the measured mean river flow. Figure
3 shows the calculated and simulated flow. It can be
seen that the flow values estimated by the network
follow the observed values. However, there are some
underestimations or overestimations, especially for
large flow values.
5 CONCLUSIONS
These results clearly show that artificial neural
networks can model the rainfall-discharge
relationship without the need to use parameters other
than precipitation and flow rate.
Neural networks can represent hydrologic time
series, even if they are complex and they are resistant
to noise or unreliable data. But the absence of a
systematic method allowing to define of the best
topology of the network and the number of neurons
to be placed in the hidden layers, the choice of the
initial values of the network weights, and the
adjustment of the learning step, which play an
important role in the speed of convergence and the
problem of overfitting remain the most important
drawbacks.
REFERENCES
Aguilera, P., Frenich, A. G., Torres, J., Castro, H., Vidal, J.
M., & Canton, M. J. W. r., 2001. Application of the
Kohonen neural network in coastal water management:
methodological development for the assessment and
prediction of water quality. 35(17), 4053-4062.
Atiya, A. F., El-Shoura, S. M., Shaheen, S. I., & El-Sherif,
M. S. J. I. T. o. n. n., 1999. A comparison between
neural-network forecasting techniques-case study: river
flow forecasting. 10(2), 402-409.
Bai, S., Kolter, J. Z., & Koltun, V. J. a. p. a., 2018. An
empirical evaluation of generic convolutional and
recurrent networks for sequence modeling.
Ben-Daoud, M., El Mahrad, B., Elhassnaoui, I., Moumen,
A., Sayad, A., ELbouhadioui, M., . . . Eljaafari, S. J. E.
C., 2021. Integrated water resources management: An
indicator framework for water management system
assessment in the R'Dom Sub-basin, Morocco. 3,
100062.
Ben-Daoud, M., Moumen, A., Sayad, A., ELbouhadioui,
M., Essahlaoui, A., & Eljaafari, S., 2021. Indicators of
Integrated Water Resources Management at the local
level: Meknes as a case (Morocco). Paper presented at
the E3S Web of Conferences.
Bengio, Y., Courville, A., Vincent, P. J. I. t. o. p. a., &
intelligence, m., 2013. Representation learning: A
review and new perspectives. 35(8), 1798-1828.
Borovykh, A., Bohte, S., & Oosterlee, C. W. J. a. p. a.,
2017. Conditional time series forecasting with
convolutional neural networks.
Coulibaly, P., Anctil, F., & Bobée, B. J. C. J. o. c. e., 1999.
Prévision hydrologique par réseaux de neurones
artificiels: état de l'art. 26(3), 293-304.
Daniel, A., & Chen, A. J. S. e., 1991. Stochastic simulation
and forecasting of hourly average wind speed
sequences in Jamaica. 46(1), 1-11.
El Mansouri, B., & El Mezouary, L. J. P. o. t. I. A. o. H. S.,
2015. Enhancement of groundwater potential by aquifer
artificial recharge techniques: an adaptation to climate
change. 366, 155-156.
El Mezouary, L., 2016. Modélisation mathématique et
numérique des phénomènes d’écoulements et de
transport de pollutions dans les milieux poreux:
application a l’aquifère alluvial de la rivière de Magra,
Italie.
El Mezouary, L., El Mansouri, B., & El Bouhaddioui, M.,
2020. Groundwater forecasting using a numerical flow
model coupled with machine learning model for
synthetic time series. Paper presented at the
Proceedings of the 4th Edition of International
Conference on Geo-IT and Water Resources 2020,
Geo-IT and Water Resources 2020.
El Mezouary, L., El Mansouri, B., Kabbaj, S., Scozzari, A.,
Doveri, M., Menichini, M., & Kili, M. J. L. H. B., 2015.
Modélisation numérique de la variation saisonnière de
la qualité des eaux souterraines de l'aquifère de Magra,
Italie. (2), 25-31.
El Mezouary, L., El Mansouri, B., Moumen, A., & El
Bouhaddioui, M., 2020. Coupling of numerical flow
model with the Susceptibility Index method (SI) to
assess the groundwater vulnerability to pollution. Paper
presented at the Proceedings of the 4th Edition of
International Conference on Geo-IT and Water
Resources 2020, Geo-IT and Water Resources 2020.
El Mezouary, L., Kabbaj, S., Elmansouri, B., Scozzari, A.,
Doveri, M., Menichini, M., . . . Applications. 2016.
Stochastic modeling of flow in porous media by Monte
Carlo simulation of permeability. 15.
Elman, J. L. J. C. s., 1990. Finding structure in time. 14(2),
179-211.
Graves, A., Wayne, G., & Danihelka, I. J. a. p. a., 2014.
Neural turing machines.
Huang, W., Lai, K. K., Nakamori, Y., Wang, S., Yu, L. J. I.
J. o. I. T., & Making, D., 2007. Neural networks in
finance and economics forecasting. 6(01), 113-140.
Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. J. I. J. o. F.,
2021. Temporal fusion transformers for interpretable
multi-horizon time series forecasting.