He, W. (2017). Load Forecasting via Deep Neural
Networks. Procedia Computer Science, 122, 308‑314.
https://doi.org/10.1016/j.procs.2017.11.374
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term
Memory. Neural Computation, 9(8), 1735‑1780.
https://doi.org/10.1162/neco.1997.9.8.1735
Huang, L., & Wang, J. (2018). Global crude oil price
prediction and synchronization based accuracy
evaluation using random wavelet neural network.
Energy, 151, 875‑888.
https://doi.org/10.1016/j.energy.2018.03.099
Khan, Z., Hussain, T., Ullah, A., Rho, S., Lee, M., & Baik,
S. (2020). Towards Efficient Electricity Forecasting in
Residential and Commercial Buildings : A Novel
Hybrid CNN with a LSTM-AE based Framework.
Sensors, 20(5), 1399.
https://doi.org/10.3390/s20051399
Kim, J.-Y., & Cho, S.-B. (2019). Electric Energy
Consumption Prediction by Deep Learning with State
Explainable Autoencoder. Energies, 12(4), 739.
https://doi.org/10.3390/en12040739
Kim, T.-Y., & Cho, S.-B. (2019a). "Load Forecasting via
Deep Neural Networks. Energy, 182, 72‑81.
https://doi.org/10.1016/j.energy.2019.05.230
Kim, T.-Y., & Cho, S.-B. (2019b). Predicting residential
energy consumption using CNN-LSTM neural
networks. Energy, 182, 72‑81.
https://doi.org/10.1016/j.energy.2019.05.230
Le, T., Vo, M. T., Vo, B., Hwang, E., Rho, S., & Baik, S.
W. (2019). Improving Electric Energy Consumption
Prediction Using CNN and Bi-LSTM. Applied
Sciences, 9(20), 4237.
https://doi.org/10.3390/app9204237
Marino, D. L., Amarasinghe, K., & Manic, M. (2016).
Building energy load forecasting using Deep Neural
Networks. IECON 2016 - 42nd Annual Conference of
the IEEE Industrial Electronics Society, 7046‑7051.
https://doi.org/10.1109/IECON.2016.7793413
Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., &
Abd. Majid, M. Z. (2015). A global review of energy
consumption, CO2 emissions and policy in the
residential sector (with an overview of the top ten CO2
emitting countries). Renewable and Sustainable Energy
Reviews, 43, 843‑862.
https://doi.org/10.1016/j.rser.2014.11.066
Son, H., & Kim, C. (2020). A Deep Learning Approach to
Forecasting Monthly Demand for Residential–Sector
Electricity. Sustainability, 12(8), 3103.
https://doi.org/10.3390/su12083103
Taylor, G. W., Hinton, G. E., & Roweis, S. T. (s. d.). Two
Distributed-State Models For Generating High-
Dimensional Time Series. 44.
Wang, J. Q., Du, Y., & Wang, J. (2020). LSTM based long-
term energy consumption prediction with periodicity.
Energy, 197, 117197.
https://doi.org/10.1016/j.energy.2020.117197
Werbos, P. J. (1990). Backpropagation through time : What
it does and how to do it. Proceedings of the IEEE,
78(10), 1550‑1560. https://doi.org/10.1109/5.58337
World Energy Outlook 2017 – Analysis. (s. d.). IEA.
Consulté 17 avril 2021, à l’adresse
https://www.iea.org/reports/world-energy-outlook-
2017
Zhang, Q., Liu, B., Zhou, F., Wang, Q., & Kong, J. (2018).
State-of-charge estimation method of lithium-ion
batteries based on long-short term memory network.
IOP Conference Series: Earth and Environmental
Science, 208, 012001. https://doi.org/10.1088/1755-
1315/208/1/012001
Zhao, G. Y., Liu, Z. Y., He, Y., Cao, H. J., & Guo, Y. B.
(2017). Energy consumption in machining :
Classification, prediction, and reduction strategy.
Energy, 133, 142‑157.
https://doi.org/10.1016/j.energy.2017.05.110