Numerical Investigation of Unsteady Turbulent Flow of
Incompressible Fluid around a Cylinder
M. Essahraoui
1
, A. Ederouich
1
, R. El Bouayadi
1
and A. Saad
2
1
(4) SEALAB, Systems Engineering Advanced Laboratory, Kenitra, Morocco
2
National School of Applied Sciences, Ibn Tofail University, Kenitra, Morocco
Keywords: Turbulent, Unsteady Flow, Cylinder, Drag, Lift, FVM, ๐‘˜๎ต†๐œ€.
Abstract: In this work we have investigated a numerical study of unsteady two-dimensional turbulent flow of
incompressible fluid around and behind a cylinder with various diameter
๏ˆบ
๐ท
๎ฌต
๎ตŒ50๐‘š๐‘š, ๐ท
๎ฌถ
๎ตŒ
100๐‘š๐‘š
๏ˆป
๐‘Ž๐‘ก ๐‘…
๎ฏ˜
๎ตŒ10๎ตˆ10
๎ฌท
๐‘Ž๐‘›๐‘‘ ๐‘…
๎ฏ˜
๎ตŒ30๎ตˆ10
๎ฌท
, respectively. A numerical simulation will be used by CFD
code to visualize the phenomenon of turbulent wakes generated behind a cylinder and the separation region
around the surface cylinder. The standard ๐‘˜๎ต†๐œ€ model is the numerical method used to manage the turbulent
flow. This study led us to focus on the velocity contours, pressure contours, the static pressure distribution
along the x-direction, the profiles of skin friction coefficients, and the variation of drag and lift coefficients
as a function of time. The results obtained for the two cases considered gave us satisfactory results. The
development of an oscillation region behind the cylinder, the variation of static pressure and skin friction
coefficient along the cylinder, the mean velocity fields, pressure fields, all will be captured by the present
simulation.
1 INTRODUCTION
The study of the characteristics flow of fluid around
an object is essential for automotive, aeronautical and
oil industries, but also for civil engineering. In
particular, it is a prerequisite for the understanding of
erosion phenomena in earthen dams, whether internal
or external. The flow around or behind a cylinder is a
classical fluid dynamics problem, and serves as a
framework validating of new numerical methods.
This academic problem has received a renewed
interest during the last decade, both experimentally
and numerically, due to the emergence of new
methods for solving the equations of dynamics.
The studies have been done by the recent
experiments demonstrated that the flow field is
symmetrical upon the circular cylinder at values of
๐‘…
๎ฏ˜
๎ต‘5, and as we increase the value of Reynolds
number, the flow becomes unstable and the rate of
mixing layers of fluid become more intense which
causing the vortex shedding. (Dou, 2015)
Most of the experimental studies investigated the
steady and unsteady behaviours of the alternating
vortices in the wake. The work of (Tritton, 1971),
(Lourenco & Shih, 1993), and (Braza, Chassaing, &
Minh, 1990) should be mentioned. Besides these
theoretical and numerical investigations, some
experimental visualizations have been described by
(Honji & Taneda , 1969), (Coutanceau & Defaye,
1991). (Rahman, Karim, & Alim, 2007)
The study of Hydrodynamic and aerodynamic
phenomena of a wake modification behind an
obstacle remains a fundamental problem in fluid
dynamics fields. Thus, the vortex structures generate
behind obstacles is of great interest in engineering
practice. Indeed, the comprehension of the vortex
structures produced behind these obstacles and their
different regimes are of primary use in
constructing structures exposed to fluid flows. For a
better visualization of the hydrodynamic and
aerodynamic phenomena, a cylindrical obstacle is
required because of their geometrical simplicity
allowing numerical and experimental facilities.
(Essel, Sharkey, & Tachine, 2014)
The objective of this numerical study, is to
investigate the phenomena of unsteady two-
dimensional turbulent flow of incompressible fluid
around and behind a cylinder of diameter ๐ท
๎ฌต
๎ตŒ
50๐‘š๐‘š ๐‘Ž๐‘›๐‘‘ ๐ท
๎ฌถ
๎ตŒ100๐‘š๐‘š at ๐‘…
๎ฏ˜
๎ตŒ10๎ตˆ
10
๎ฌท
๐‘Ž๐‘›๐‘‘ ๐‘…
๎ฏ˜
๎ตŒ30๎ตˆ10
๎ฌท
respectively. Reynolds
number based on the diameter of the cylinder, in our
study we have focused to change the diameter of the
Essahraoui, M., Ederouich, A., El Bouayadi, R. and Saad, A.
Numerical Investigation of Unsteady Turbulent Flow of Incompressible Fluid around a Cylinder.
DOI: 10.5220/0010733200003101
In Proceedings of the 2nd International Conference on Big Data, Modelling and Machine Learning (BML 2021), pages 311-315
ISBN: 978-989-758-559-3
Copyright
c
๎€ 2022 by SCITEPRESS โ€“ Science and Technology Publications, Lda. All rights reserved
311
cylinder and visualize how this change influence on
the wake region behind the cylinder, and in the
variation of drag, lift, static pressure, velocity profile
and skin friction coefficient. Our work gives us a
satisfactory result compared to the recent studies.
2 PHYSICAL MODEL
2.1 Mathematical Formulations
๐œ•๐‘ข
๎ฏœ
๐œ•๐‘ฅ
๎ฏœ
๎ตŒ0 (1)
๐œ•๐‘ข
๎ฏœ
๐œ•๐‘ก
๎ต…๐‘ข
๎ฏ
๐œ•๐‘ข
๎ฏœ
๐œ•๐‘ฅ
๎ฏ
๎ตŒ๎ต†
1
๐œŒ
๐œ•๐‘
๐œ•๐‘ฅ
๎ฏœ
๎ต…๐œˆ
๐œ•
๎ฌถ
๐‘ข
๎ฏœ
๐œ•๐‘ฅ
๎ฏ
๎ฌถ
๎ต†
๐œ•๐‘ข
๎ฐช
๏‡ฑ
๐‘ข
๎ฐซ
๏‡ฑ
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๐œ•๐‘ฅ
๎ฏ
(2)
๎ต†๐œ•๐‘ข
๎ฐช
๏‡ฑ
๐‘ข
๎ฐซ
๏‡ฑ
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๎ตŒ๐œˆ
๎ฏ
๏‰†
๐œ•๐‘ข
๎ฏœ
๐œ•๐‘ฅ
๎ฏ
๎ต…
๐œ•๐‘ข
๎ฏ
๐œ•๐‘ฅ
๎ฏœ
๏‰‡๎ต†
2
3
๐‘˜๐›ฟ
๎ฏœ๎ฏ
(3)
๐œ•๐œŒ๐‘˜
๐œ•๐‘ก
๎ต…
๐œ•๐œŒ๐‘˜๐‘ข
๎ฏœ
๐œ•๐‘ฅ
๎ฏœ
๎ตŒ
๐œ•
๐œ•๐‘ฅ
๎ฏ
๏‰ˆ๎ตฌ๐œ‡ ๎ต…
๐œ‡
๎ฏ
๐œŽ
๎ฏž
๎ตฐ
๐œ•๐‘˜
๐œ•๐‘ฅ
๎ฏ
๏‰‰๎ต…๐บ
๎ฏž
๎ต†๐œŒ๐œ€ (4)
๐œ•๐œŒ๐œ€
๐œ•๐‘ก
๎ต…
๐œ•๐œŒ๐œ€๐‘ข
๎ฏœ
๐œ•๐‘ฅ
๎ฏœ
๎ตŒ
๐œ•
๐œ•๐‘ฅ
๎ฏ
๏‰ˆ๎ตฌ
๐œ‡๎ต…
๐œ‡
๎ฏ
๐œŽ
๎ฐŒ
๎ตฐ
๐œ•๐œ€
๐œ•๐‘ฅ
๎ฏ
๏‰‰
๎ต…๐ถ
๎ฌต๎ฐŒ
๐œ€
๐‘˜
๏ˆบ
๐บ
๎ฏž
๏ˆป
๎ต†๐ถ
๎ฌถ๎ฐŒ
๐œŒ
๐œ€
๎ฌถ
๐‘˜
(5)
Where ๐‘–,๐‘— ๎ตŒ 1,2
๎ตœ
๐‘ฅ
๎ฌต
:โ„Ž๐‘œ๐‘Ÿ๐‘–๐‘ง๐‘œ๐‘›๐‘ก๐‘Ž๐‘™ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›
๐‘ฅ
๎ฌถ
:๐‘ฃ๐‘’๐‘Ÿ๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›
๐‘ข
๎ฌต
,๐‘ข
๎ฌถ
:๐‘š๐‘’๐‘Ž๐‘› ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘ 
๐‘ข
๎ฐช
๏‡ฑ
๐‘ข
๎ฐซ
๏‡ฑ
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
๎ดค
:๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘ 
๐‘ข
๎ฏœ,๎ฏ
๏‡ฑ
:๐น๐‘™๐‘ข๐‘๐‘ก๐‘ข๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘๐‘Ž๐‘Ÿ๐‘ก ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
๐‘:๐ท๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐œŒ:๐‘‡โ„Ž๐‘’ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘
๐‘˜:๐‘‡โ„Ž๐‘’ ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘˜๐‘–๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ
๐œ€:๐‘‡โ„Ž๐‘’ ๐‘‘๐‘–๐‘ ๐‘ ๐‘–๐‘๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘Ž๐‘ก๐‘’
๐œˆ
๎ฏ
:๐‘‡๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
๐บ
๎ฏž
: ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘๐‘’ ๐‘˜๐‘–๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ
๐ถ
๎ฌต๎ฐŒ
,๐ถ
๎ฌถ๎ฐŒ
: ๐ธ๐‘š๐‘๐‘–๐‘Ÿ๐‘–๐‘๐‘Ž๐‘™ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘˜๎ต† ๐œ€
๐œŽ
๎ฏž
,๐œŽ
๎ฐŒ
:๐‘‡๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก ๐‘๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘ก๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ ๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐œ€
For our study, we have chosen the standard ๐‘˜๎ต†๐œ€
model, so the values of empirical coefficients are:
C
๎ฌต๎ฎ•
๎ตŒ1.44,C
๎ฌถ๎ฎ•
๎ตŒ1.92,ฯƒ
๎ญฉ
๎ตŒ1.0,ฯƒ
๎ฎ•
๎ตŒ1.3,C
๎ฎœ
๎ตŒ0.09
The governing equations have been discretized by
the finite volume method (FVM). The SIMPLE
scheme algorithm has been used by the coupling of
pressure, and velocity. The Reynolds numbers values
are depended on the variation of the cylinder
diameter. (Kaur & Kumar, 2018)
2.2 Geometric and Meshing
Figure 1: The computational Domain.
The computational domain is a surface of
dimension 800x2300. The diameter of each cylinder
is (๐ท
๎ฌต
๎ตŒ50๐‘š๐‘š ๐‘Ž๐‘›๐‘‘ ๐ท
๎ฌถ
๎ตŒ100๐‘š๐‘š๏ˆป .The upstream
length is 800mm and the downstream length is
1500mm from the centre of the cylinder.
Figure 2: The grid around the cylinder.
A fine refined mesh around the cylinder is required to
have better accuracy of the results by the CFD solver,
and the method used for our mesh is the Rectangular
domain with smooth quadrilateral grids. (Salehi,
Mazaheri, & Kazeminezhad, 2018)
2.3 Characteristic Parameter
Drag and lift coefficients are the fundamental
characteristics parameters for better understanding
the motion of fluid around a cylinder. (Shim, Sharma,
& Richards, 2009) The Strouhal number is describing
the oscillating flow mechanism in order to study
vortex shedding. The pressure coefficient is a
dimensionless term, which describes the relative
BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BMLโ€™21)
312
pressure through the flow field. Moreover, the skin
friction coefficient dimensionless parameter
describes the aerodynamic resistance due to the
contact of moving fluid on the surface of the cylinder.
All these parameters are defined as follows:
๐ถ
๎ฏ—
๎ตŒ
2๐น
๎ฏ—
๐œŒ๐‘‰
๎ฎถ
๎ฌถ
๐ด
(6)
๐ถ
๎ฏŸ
๎ตŒ
2๐น
๎ฏŸ
๐œŒ๐‘‰
๎ฎถ
๎ฌถ
๐ด
(7)
๐ถ
๎ฏ™
๎ตŒ
๐œ
๎ฏช
1
2
๐œŒ๐‘‰
๎ฎถ
๎ฌถ
(8)
๐ถ
๎ฏ‰
๎ตŒ
๐‘ƒ๎ต†๐‘ƒ
๎ฎถ
1
2
๐œŒ๐‘‰
๎ฎถ
๎ฌถ
(9)
๐‘†
๎ฏง
๎ตŒ
๐‘“
๐ฟ
๐‘‰
๎ฎถ
(10)
๐‘จโˆถ๐‘ƒ๐‘Ÿ๐‘œ๐‘—๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐ด๐‘Ÿ๐‘’๐‘Ž
๐’‡โˆถ๐‘‡โ„Ž๐‘’ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘’๐‘‘๐‘–๐‘›๐‘”
๐‘ณ: ๐‘‡โ„Ž๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘–.๐‘’ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ
๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ
๐‰
๐’˜
โˆถ๐‘†๐‘˜๐‘–๐‘› ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  ๐‘œ๐‘› ๐‘Ž ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’
๐‘ท: ๐‘‡โ„Ž๐‘’ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘–๐‘›๐‘ก ๐‘Ž๐‘ก
๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก โ„Ž๐‘Ž๐‘  ๐‘๐‘’๐‘’๐‘› ๐‘’๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘Ž๐‘ก๐‘’๐‘‘.
๐‘ท
๎ฎถ
:๐‘‡โ„Ž๐‘’ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘“๐‘Ÿ๐‘’๐‘’ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š.
๐‘ญ
๐’…
,๐‘ญ
๐’
โˆถ๐ท๐‘Ÿ๐‘Ž๐‘” ๐‘Ž๐‘›๐‘‘ ๐ฟ๐‘–๐‘“๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
3 RESULTS
Since we are studying the effect of fluid flow on two
various cylinder diameter with an unsteady turbulent
incompressible flow, the velocity and pressure
contours do not manifest a sizeable difference with
the literature, and it can be notice that there are big
vortices that develop downstream of the cylinder
whose they are ejected in alternation sometimes
towards the upper and the lower wall. See figures 3,
4, 5 and 6. The velocity and pressure profiles around
the cylinder
๏ˆบ
๐‘ซ
๐Ÿ
๎ตŒ๐Ÿ“๐ŸŽ๐’Ž๐’Ž ๐’‚๐’๐’… ๐‘ซ
๐Ÿ
๎ตŒ๐Ÿ๐ŸŽ๐ŸŽ๐’Ž๐’Ž
๏ˆป
at
different x positions have been visualized by the
present simulation. See figures 7 and 8. The drag and
lift coefficients around the cylinder vary with time in
the form of quasi sinusoidal curve. See figures 9 and
10. The skin friction coefficient increases relatively
linearly from the stagnation point ๐ฑ๎ตŒ๎ต†๐ŸŽ.๐ŸŽ๐Ÿ“
๏ˆบ
๐ƒ
๐Ÿ
๎ตŒ
๐Ÿ๐ŸŽ๐ŸŽ๐ฆ๐ฆ
๏ˆป
๐š๐ง๐ ๐ฑ๎ตŒ๎ต†๐ŸŽ.๐ŸŽ๐Ÿ๐Ÿ“
๏ˆบ
๐ƒ
๐Ÿ
๎ตŒ๐Ÿ“๐ŸŽ๐ฆ๐ฆ
๏ˆป
, until
it reaches a maximum level at approximately
๎ต†๐ŸŽ.๐ŸŽ๐Ÿ‘๐Ÿ“๎ต‘๐ฑ๎ต‘๎ต†๐ŸŽ.๐ŸŽ๐Ÿ๐Ÿ“ at different Reynolds
number values. This location is upstream of the
cylinder, approximately 0,35โ‰ค๐‘ช๐’‡โ‰ค0,045, as we will
observe in the figures below, and then it gradually
decreases before stabilizing to an asymptotic value.
See figure 11.
3.1 Velocity Contours
Figure 3: Velocity contours at ๐‘…
๎ฏ˜
๎ตŒ10๎ตˆ10
๎ฌท
.
Figure 4: Velocity contours at ๐‘…
๎ฏ˜
๎ตŒ30๎ตˆ10
๎ฌท
.
3.2 Pressure Contours
Figure 5: Pressure contours at ๐‘…
๎ฏ˜
๎ตŒ10๎ตˆ10
๎ฌท
.
Figure 6: Pressure contours at ๐‘…
๎ฏ˜
๎ตŒ30๎ตˆ10
๎ฌท
.
Numerical Investigation of Unsteady Turbulent Flow of Incompressible Fluid around a Cylinder
313
3.3 Velocity Profiles
Figure 7: Velocity profiles x=ยฑ1.5 at different Reynolds
number.
3.4 Pressure Profiles
Figure 8: Pressure Profiles X=ยฑ0.06 at Different Reynolds
NUMBER.
3.5 Drag & Lift Coefficient at
๐‘น
๐’†
๎ตŒ๐Ÿ๐ŸŽ๎ตˆ๐Ÿ๐ŸŽ
๐Ÿ‘
Figure 9: Variation of the coefficient of drag and lift in the
case of D=50MM.
3.6 Drag and Lift Coefficient at
๐‘น
๐’†
๎ตŒ๐Ÿ‘๐ŸŽ๎ตˆ๐Ÿ๐ŸŽ
๐Ÿ‘
Figure 10: Variation of the coefficient of drag and lift in the
case of D=100mm.
3.7 Skin Friction Coefficient
Figure 11: Variation of Skin friction coefficient at different
๐‘…
๎ฏ˜
.
4 CONCLUSIONS
The study of unsteady 2D turbulent flow around
obstacles was the objective of the present work.
Numerical simulation has been adopted by resolve the
equations of an unsteady flow of an incompressible
fluid of a turbulent regime. We compared our results
with those obtained in the literature for a flow around
a cylinder. We have visualized the phenomenon of
vortex shedding, which has been generated by
unfavorable pressure gradient at the separation points
on the cylinder surface. Thus, the pressure values are
lower above and below the cylinder and an oscillation
region behind the cylinder was observed for both
Reynolds number. In the middle of the vortex area,
the velocity and pressure are low compared to the
extremity. The variation of the lift and drag
coefficients are simultaneous with the vortex
shedding detachment. This detachment is responsible
for the creation of large vortices behind the cylinder.
We can notice from the graphs of static pressure and
skin friction coefficient that the values of pressure
and skin friction coefficient are not identical around
BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BMLโ€™21)
314
the cylinder, and the flow is separated on the cylinder
surface.
REFERENCES
Braza, M., Chassaing, P., & Minh, H. H. (1990). Prediction
of Large-Scale Transition features in the wake. Phys.
Fluids, A2(8), 1461-1471.
Coutanceau, M., & Defaye, J. R. (1991). Circular Cylinder
Wake Configurations- A flow Visualization. 44(6).
Dou, H.-S. (2015, March). Simulation and Instability
Investigation of the Flow around a Cylinder between
Two Parallel Walls. Journal of Thermal Science, 24(2),
140-148.
Essel, E. E., Sharkey, L., & Tachine, M. F. (2014, August).
Effects of gap ratio on flow past a square cylinder. In
Fluids Engineering Division Summer Meeting.
Honji, H., & Taneda , S. (1969). Unsteady Flow Past a
Circular Cylinder. J. Phys, 1668-1677.
Kaur, M., & Kumar, P. (2018, August). Numerical
investigation of flow over a circular cylinder at different
gap ratios. In IOP Conference Series: Materials
Science and Engineering, Vol.402(No.1).
Lourenco, L. M., & Shih, C. (1993). Characteristics of the
Plane Turbulent Near Wake of a Circular. A Particle
Image Velocimetry Study, Private Communication.
Rahman, M., Karim, M., & Alim, A. (2007). Numerical
investigation of unsteady flow past a circular cylinder
using 2-D finite volume method. Journal of Naval
Architecture and Marine Engineering, 4(1), 27-42.
Salehi, M. A., Mazaheri, S., & Kazeminezhad, M. H.
(2018). Study of Flow Characteristics Around a Near-
Wall Circulair Cylinder Subjected to a Steady Cross-
Flow. International journal of coastal & offshore
engineering, 1(4), 45-55.
Shim, Y. M., Sharma, R. N., & Richards, P. J. (2009, June).
Numerical study of the flow over a circular cylinder in
the near wake at Reynolds number 3900. In 39th AIAA
Fluid Dynamics Conference (p. 4160).
Tritton, D. J. (1971). A Note on Vortex Streets behind
Circular Cylinders. J. Fluid Mech, 45(203).
Numerical Investigation of Unsteady Turbulent Flow of Incompressible Fluid around a Cylinder
315