distributed residuals density that satisfies the
normality assumption of the residuals (Figure.3) and
residuals are close to zero (Figure.4)
4 CONCLUSIONS
In this article, we have used several input parameters
collected from internationally recognized sources to
predict the electrical power produced by PV panels.
We concluded that the MARS method demonstrated
superior accuracy than MLR in predicting the PV
power.
The results obtained also ensure the ability, with
high precision, of machine learning techniques to
forecast the PV power. In the likely future, these
algorithms will have a significant position in PV
remote management, where this technology will be
highly prevalent in several territories worldwide.
REFERENCES
S. Moslehi, T. A. Reddy, and S. Katipamula, “Evaluation
of data-driven models for predicting solar photovoltaic
power output,” Energy, vol. 142, pp. 1057–1065, 2018,
DOI: 10.1016/j.energy.2017.09.042.
I. Kaaya, S. Lindig, K. A. Weiss, A. Virtuani, M. Sidrach
de Cardona Ortin, and D. Moser, “Photovoltaic lifetime
forecast model based on degradation patterns,” Prog.
Photovoltaics Res. Appl., vol. 28, no. 10, pp. 979–992,
2020, DOI: 10.1002/pip.3280.
K. T. Dirk C. Jordan, Timothy J. Silverman, John H.
Wohlgemuth, Sarah R. Kurtz and VanSant,
“Photovoltaic failure and degradation modes,” Prog.
Photovoltaics Res. Appl., vol. 20, no. 1, pp. 6–11, 2017,
DOI: 10.1002/pip.2866.
S. Sobri, S. Koohi-Kamali, and N. A. Rahim, “Solar
photovoltaic generation forecasting methods: A
review,” Energy Convers. Manag., vol. 156, no. May
2017, pp. 459–497, 2018, DOI:
10.1016/j.enconman.2017.11.019.
N. Maitanova, J. Telle, B. Hanke, M. Grottke, T. Schmidt,
K. Von Maydell, C. Agert, “A machine learning
approach to low-cost photovoltaic power prediction
based on publicly available weather reports,” Energies,
vol. 13, no. 3, 2020, DOI: 10.3390/en13030735.
G. M. Spyros Theocharides, George E. Georghiou, Andreas
Kyprianou, “Machine Learning Algorithms for
Photovoltaic System Power Output Prediction,” 2018,
[Online]. Available: internal-
pdf://164.110.9.91/theocharides2018.pdf.
J. Wang, R. Ran, and Y. Zhou, “A short-term photovoltaic
power prediction model based on a FOS-ELM
algorithm,” Appl. Sci., vol. 7, no. 4, 2017, DOI:
10.3390/app7040423.
J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J.
Martinez-de-Pison, and F. Antonanzas-Torres,
“Review of photovoltaic power forecasting,” Sol.
Energy, vol. 136, pp. 78–111, 2016, DOI:
10.1016/j.solener.2016.06.069.
N. A. Ramli, M. F. A. Hamid, N. H. Azhan, and M. A. A.
S. Ishak, “Solar power generation prediction by using
the k-nearest neighbour method,” AIP Conf. Proc., vol.
2129, no. July, 2019, DOI: 10.1063/1.5118124.
A. Golder, J. Jneid, J. Zhao, and F. Bouffard, “Machine
learning-based demand and PV power forecasts,” 2019
IEEE Electr. Power Energy Conf. EPEC 2019, vol. 3,
2019, DOI: 10.1109/EPEC47565.2019.9074819.
M. Kayri, I. Kayri, and M. T. Gencoglu, “The performance
comparison of Multiple Linear Regression, Random
Forest and Artificial Neural Network using
photovoltaic and atmospheric data,” 2017 14th Int.
Conf. Eng. Mod. Electr. Syst. EMES 2017, pp. 1–4,
2017, DOI: 10.1109/EMES.2017.7980368.
B. Gschwind, L. Wald, P. Blanc, M. Lefèvre, M.
Schroedter-Homscheidt, and A. Arola, “Improving the
McClear model estimating the downwelling solar
radiation at ground level in cloud-free conditions -
McClear-v3,” Meteorol. Zeitschrift, vol. 28, no. 2, pp.
147–163, 2019, DOI: 10.1127/metz/2019/0946.
R. CoreTeam, R: A Language and Environment for
Statistical Computing, vol. 2. 2018.
Y. Li, Y. He, Y. Su, and L. Shu, “Forecasting the daily
power output of a grid-connected photovoltaic system
based on multivariate adaptive regression splines,”
Appl. Energy, vol. 180, pp. 392–401, 2016, DOI:
10.1016/j.apenergy.2016.07.052.
S. G. Kim, J. Y. Jung, and M. K. Sim, “A two-step approach
to solar power generation prediction based on weather
data using machine learning,” Sustain., vol. 11, no. 5,
2019, DOI: 10.3390/SU11051501.