the practical case of MyHeart project. In International
Workshop on Wearable and Implantable Body Sensor
Networks (BSN'06) (pp. 4-pp). IEEE
Ghosh, Pronab, et al. "Efficient Prediction of
Cardiovascular Disease Using Machine Learning
Algorithms With Relief and LASSO Feature Selection
Techniques." IEEE Access 9 (2021): 19304-19326.
Ltifi, H., Ben Mohamed, E., & ben Ayed, M. (2016).
Interactive visual knowledge discovery from data-
based temporal decision support system. Information
Visualization, 15(1), 31-50.
Kakria, P., Tripathi, N. K., &Kitipawang, P. (2015). A
real-time health monitoring system for remote cardiac
patients using smartphone and wearable sensors.
International journal of telemedicine and applications,
2015, 8.
Jemmaa, A. B., Ltifi, H., &Ayed, M. B. (2016,
November). Multi-agent architecture for visual
intelligent remote healthcare monitoringsystem. In
International Conference on Hybrid Intelligent
Systems (pp. 211-221). SPRINGER, CHAM.
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D.,
Narayanaswamy, A., ... & Webster, D. R. (2016).
Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in
retinal fundus photographs. Jama, 316(22), 2402-
2410.
Shin, H. C., Orton, M. R., Collins, D. J., Doran, S. J., &
Leach, M. O. (2012). Stacked autoencoders for
unsupervised feature learning and multiple organ
detection in a pilot study using 4D patient data. IEEE
transactions on pattern analysis and machine
intelligence, 35(8), 1930-1943.
Li, C., Wang, X., Liu, W., &Latecki, L. J. (2018).
DeepMitosis: Mitosis detection via deep detection,
verification and segmentation networks. Medical
image analysis, 45, 121-133.
Madani, A., Arnaout, R., Mofrad, M., & Arnaout, R.
(2018). Fast and accurate view classification of
echocardiograms using deep learning. NPJ digital
medicine, 1(1), 1-8.
Kusunose, K., Haga, A., Inoue, M., Fukuda, D., Yamada,
H., &Sata, M. (2020). Clinically Feasible and
Accurate View Classification of Echocardiographic
Images Using Deep Learning. Biomolecules, 10(5),
665.
Lyons, J., Dehzangi, A., Heffernan, R., Sharma, A.,
Paliwal, K., Sattar, A., ... &Yang, Y. (2014).
Predicting backbone Cα angles and dihedrals from
protein sequences by stacked sparse auto‐encoder deep
neural network. Journal of computational chemistry,
35(28), 2040-2046.
Lee, T., & Yoon, S. (2015, June). Boosted categorical
restricted Boltzmann machine for computational
prediction of splice junctions. In International
conference on machine learning (pp. 2483-2492).
PMLR.
Liu, S., Zheng, H., Feng, Y., & Li, W. (2017, March).
Prostate cancer diagnosis using deep learning with 3D
multiparametric MRI. In Medical imaging 2017:
computer-aided diagnosis (Vol. 10134, p. 1013428).
International Society for Optics and Photonics.
Wei, B., Han, Z., He, X., & Yin, Y. (2017, April). Deep
learning model based breast cancer histopathological
image classification. In 2017 IEEE 2nd international
conference on cloud computing and big data analysis
(ICCCBDA) (pp. 348-353).IEEE
Leung, M. K., Xiong, H. Y., Lee, L. J., & Frey, B. J.
(2014). Deep learning of the tissue-regulated splicing
code. Bioinformatics, 30(12), i121-i129.
Zhang, S., Zhou, J., Hu, H., Gong, H., Chen, L., Cheng,
C., & Zeng, J. (2016). A deep learning framework for
modeling structural features of RNA-binding protein
targets. Nucleic acids research, 44(4), e32-e32.
Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016).
Deep patient: an unsupervised representation to predict
the future of patients from the electronic health
records. Scientific reports, 6(1), 1-10.
Pham, T., Tran, T., Phung, D., & Venkatesh, S. (2016,
April). Deepcare: A deep dynamic memory model for
predictive medicine. In Pacific-Asia conference on
knowledge discovery and data mining (pp. 30-41).
SPRINGER, CHAM.
Lebedev, G., Klimenko, H., Fartushniy, E., Shaderkin, I.,
Kozhin, P., &Galitskaya, D. (2019). Building a
Telemedicine System for Monitoring the Health Status
and Supporting the Social Adaptation of Children with
Autism Spectrum Disorders. In Intelligent Decision
Technologies 2019 (pp. 287-294). SPRINGER,
SINGAPORE.
Frederix, I., Hansen, D., Coninx, K., Vandervoort, P.,
Vandijck, D., Hens, N., ... &Dendale, P. (2015).
Medium-term effectiveness of a comprehensive
internet-based and patient-specific telerehabilitation
program with text messaging support for cardiac
patients: randomized controlled trial. Journal of
medical Internet research, 17(7), e185.
Escobar-Curbelo, L., & Franco-Moreno, A. I. (2019).
Application of telemedicine for the control of patients
with acute and chronic heart diseases. Telemedicine
and e-Health, 25(11), 1033-1039.
Krachunov, S., Beach, C., Casson, A. J., Pope, J., Fafoutis,
X., Piechocki, R. J., & Craddock, I. (2017, June).
Energy efficient heart rate sensing using a painted
electrode ECG wearable. In 2017 Global Internet of
Things Summit (GIoTS) (pp. 1-6). IEEE.