REFERENCES
Amadeus, S., Cenggoro, T. W., Budiarto, A., &
Pardamean, B. (2021). A Design of Polygenic Risk
Model with Deep Learning for Colorectal Cancer in
Multiethnic Indonesians. Procedia Computer Science,
179, 632‑639.
https://doi.org/10.1016/j.procs.2021.01.049.
Birks, J., Bankhead, C., Holt, T. A., Fuller, A., & Patnick,
J. (2017). Evaluation of a prediction model for
colorectal cancer : Retrospective analysis of 2.5
million patient records. Cancer Medicine, 6(10),
2453‑2460. https://doi.org/10.1002/cam4.1183
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L.,
Torre, L. A., & Jemal, A. (2018). Global cancer
statistics 2018 : GLOBOCAN estimates of incidence
and mortality worldwide for 36 cancers in 185
countries. CA: A Cancer Journal for Clinicians, 68(6),
394‑424. https://doi.org/10.3322/caac.21492
Hornbrook, M. C., Goshen, R., Choman, E., O’Keeffe-
Rosetti, M., Kinar, Y., Liles, E. G., & Rust, K. C.
(2017). Early Colorectal Cancer Detected by Machine
Learning Model Using Gender, Age, and Complete
Blood Count Data. Digestive Diseases and Sciences,
62(10), 2719‑2727. https://doi.org/10.1007/s10620-
017-4722-8
Jeon, J., Du, M., Schoen, R. E., Hoffmeister, M.,
Newcomb, P. A., Berndt, S. I., Caan, B., Campbell, P.
T., Chan, A. T., Chang-Claude, J., Giles, G. G., Gong,
J., Harrison, T. A., Huyghe, J. R., Jacobs, E. J., Li, L.,
Lin, Y., Le Marchand, L., Potter, J. D., … Hsu, L.
(2018). Determining Risk of Colorectal Cancer and
Starting Age of Screening Based on Lifestyle,
Environmental, and Genetic Factors.
Gastroenterology, 154(8), 2152-2164.e19.
https://doi.org/10.1053/j.gastro.2018.02.021
Kinar, Y., Kalkstein, N., Akiva, P., Levin, B., Half, E. E.,
Goldshtein, I., Chodick, G., & Shalev, V. (2016).
Development and validation of a predictive model for
detection of colorectal cancer in primary care by
analysis of complete blood counts : A binational
retrospective study. Journal of the American Medical
Informatics Association, 23(5), 879‑890.
https://doi.org/10.1093/jamia/ocv195
Ma, G. K., & Ladabaum, U. (2014). Personalizing
Colorectal Cancer Screening : A Systematic Review
of Models to Predict Risk of Colorectal Neoplasia.
Clinical Gastroenterology and Hepatology, 12(10),
1624-1634.e1.
https://doi.org/10.1016/j.cgh.2014.01.042
Nartowt, B., Hart, G. R., Muhammad, W., Liang, Y., &
Deng, J. (2019). A Model of Risk of Colorectal
Cancer Tested between Studies : Building Robust
Machine Learning Models for Colorectal Cancer Risk
Prediction. International Journal of Radiation
Oncology, Biology, Physics, 105(1), E132.
https://doi.org/10.1016/j.ijrobp.2019.06.2265
Schneider, J. L., Layefsky, E., Udaltsova, N., Levin, T.
R., & Corley, D. A. (2020). Validation of an
Algorithm to Identify Patients at Risk for Colorectal
Cancer Based on Laboratory Test and Demographic
Data in Diverse, Community-Based Population.
Clinical Gastroenterology and Hepatology, 18(12),
2734-2741.e6.
https://doi.org/10.1016/j.cgh.2020.04.054
The PRISMA 2020 statement : An updated guideline for
reporting systematic reviews | The EQUATOR
Network. (s. d.). Consulté 29 juillet 2021, à l’adresse
https://www.equator-network.org/reporting-
guidelines/prisma/
Thomas, M., Sakoda, L. C., Hoffmeister, M., Rosenthal,
E. A., Lee, J. K., van Duijnhoven, F. J. B., Platz, E.
A., Wu, A. H., Dampier, C. H., de la Chapelle, A.,
Wolk, A., Joshi, A. D., Burnett-Hartman, A., Gsur,
A., Lindblom, A., Castells, A., Win, A. K., Namjou,
B., Van Guelpen, B., … Hsu, L. (2020). Genome-
wide Modeling of Polygenic Risk Score in Colorectal
Cancer Risk. American Journal of Human Genetics,
107(3), 432‑444.
https://doi.org/10.1016/j.ajhg.2020.07.006
Usher-Smith, J. A., Walter, F. M., Emery, J. D., Win, A.
K., & Griffin, S. J. (2016). Risk Prediction Models for
Colorectal Cancer : A Systematic Review. Cancer
Prevention Research, 9(1), 13‑26.
https://doi.org/10.1158/1940-6207.CAPR-15-0274
Wang, Y.-H., Nguyen, P.-A., Islam, M. M., Li, Y.-C., &
Yang, H.-C. (2019). Development of Deep Learning
Algorithm for Detection of Colorectal Cancer in EHR
Data. Studies in Health Technology and Informatics,
264, 438‑441. https://doi.org/10.3233/SHTI190259