ACKNOWLEDGEMENTS
We would like to thank Susianti, Nurul Ihsani,
Meita, Lydia for the technical assistance for
laboratory experiments. And we also would like to
thank dr Yuni, dr. Nova, dr. Teresa, dr. Cherry for
their assistance in studying the Wistar rats.
FUNDING
This study was funded by Universitas Kristen
Maranatha under Hibah Internal Skema Tambahan
(034/SK/ADD/UKM/VI/2021) to JWG, DKJ, DG,
LE, LK, HP, AS, and GS.
REFERENCES
Anderson, E., & Durstine, J. L. (2019). Physical activity,
exercise, and chronic diseases: A brief review. Sports
Medicine and Health Science, 1(1), 3–10.
https://doi.org/https://doi.org/10.1016/j.smhs.2019.08.
006
Avin, K. G., Vallejo, J. A., Chen, N. X., Wang, K.,
Touchberry, C. D., Brotto, M., … Wacker, M. J.
(2018). Fibroblast growth factor 23 does not directly
influence skeletal muscle cell proliferation and
differentiation or ex vivo muscle contractility.
American Journal of Physiology. Endocrinology and
Metabolism, 315(4), E594–E604.
https://doi.org/10.1152/ajpendo.00343.2017
Bacchetta, J., Sea, J. L., Chun, R. F., Lisse, T. S.,
Wesseling-Perry, K., Gales, B., … Hewison, M.
(2013). Fibroblast growth factor 23 inhibits extrarenal
synthesis of 1,25-dihydroxyvitamin D in human
monocytes. Journal of Bone and Mineral Research :
The Official Journal of the American Society for Bone
and Mineral Research, 28(1), 46–55.
https://doi.org/10.1002/jbmr.1740
Buskermolen, J., van der Meijden, K., Furrer, R., Mons,
D.-J., van Essen, H. W., Heijboer, A. C., …
Bravenboer, N. (2019). Effects of different training
modalities on phosphate homeostasis and local
vitamin D metabolism in rat bone. PeerJ, 7, e6184.
https://doi.org/10.7717/peerj.6184
Committee for the Update of the Guide for the Care and
Use of Laboratory Animals, Institute for Laboratory
Animal Research, Division on Earth and Life Studies,
& N. R. C. (2011). Guide for the care and use of
laboratory animals (8th ed.). Washington (DC).
https://doi.org/10.17226/12910
Emrich, I. E., Baier, M., Zawada, A. M., Meyer, T., Fliser,
D., Scharhag, J., & Heine, G. H. (2019, March).
Plasma FGF23 does not rise during physical exercise
as a physiological model of sympathetic activation.
Clinical Research in Cardiology : Official Journal of
the German Cardiac Society, Vol. 108, pp. 341–343.
Germany. https://doi.org/10.1007/s00392-018-1347-7
Emrich, I. E., Dederer, J., Kircher, A., Klemis, V.,
Lennartz, C. S., Untersteller, K., … Heine, G. H.
(2019). Does a rise in plasma erythropoietin after
high-altitude exposure affect FGF23 in healthy
volunteers on a normal or low-phosphorus diet?
Nutrition, Metabolism, and Cardiovascular Diseases :
NMCD, 29(12), 1361–1367.
https://doi.org/10.1016/j.numecd.2019.09.002
Ewendt, F., Feger, M., & Föller, M. (2021). Myostatin
regulates the production of fibroblast growth factor 23
(FGF23) in UMR106 osteoblast-like cells. Pflugers
Archiv : European Journal of Physiology.
https://doi.org/10.1007/s00424-021-02561-y
Faul, C., Amaral, A. P., Oskouei, B., Hu, M.-C., Sloan, A.,
Isakova, T., … Wolf, M. (2011). FGF23 induces left
ventricular hypertrophy. The Journal of Clinical
Investigation, 121(11), 4393–4408.
https://doi.org/10.1172/JCI46122
Gardinier, J. D., Al-Omaishi, S., Morris, M. D., & Kohn,
D. H. (2016). PTH signaling mediates perilacunar
remodeling during exercise. Matrix Biology : Journal
of the International Society for Matrix Biology, 52–54,
162–175. https://doi.org/10.1016/j.matbio.2016.02.010
Ho, B. B., & Bergwitz, C. (2021). FGF23 signalling and
physiology. Journal of Molecular Endocrinology,
66(2), R23–R32. https://doi.org/10.1530/JME-20-0178
Kerschan-Schindl, K., Skenderi, K., Wahl-Figlash, K.,
Gelles, K., Föger-Samwald, U., Thalmann, M., …
Pietschmann, P. (2021). Increased serum levels of
fibroblast growth factor 23 after an ultradistance run.
Journal of Science and Medicine in Sport, 24(3), 297–
300. https://doi.org/10.1016/j.jsams.2020.09.010
Keshavarzi, Z., Daryanoosh, F., Kooshki Jahromi, M., &
Mohammadi, M. (2017). The effect of 12 weeks of
aerobic exercise on plasma levels of fibroblast growth
factor 23, Angiotensin converting enzyme and left
ventricular hypertrophy in hypertensive elderly
women TT - ﯽﺳﺭﺮﺑ ﺮﻴﺛﺄﺗ 12 ﻪﺘﻔﻫ ﺖﻴﻟﺎﻌﻓ ﯽﺷﺯﺭﻭ ﺮﺑ ﺡﻮﻄﺳ
ﯽﻣﺮﺳ ﺭﻮﺘﮐﺎﻓ ﺪﺷﺭ ﻞﺑﻭﺮﺒﻴﻓ . SSU_Journals, 25(3), 222–229.
Retrieved from http://jssu.ssu.ac.ir/article-1-3998-
en.html
Kyrou, I., Weickert, M. O., Gharanei, S., Randeva, H. S.,
& Tan, B. K. (2017). Fibroblast growth factors: new
insights, new targets in the management of diabetes.
Minerva Endocrinologica, 42(3), 248–270.
https://doi.org/10.23736/S0391-1977.16.02536-0
Lara-Castillo, N., & Johnson, M. L. (2020). Bone-Muscle
Mutual Interactions. Current Osteoporosis Reports,
18(4), 408–421. https://doi.org/10.1007/s11914-020-
00602-6
Leifheit-Nestler, M., & Haffner, D. (2018). Paracrine
Effects of FGF23 on the Heart. Frontiers in
Endocrinology, 9, 278.
https://doi.org/10.3389/fendo.2018.00278
Lesmana, R., Iwasaki, T., Iizuka, Y., Amano, I.,
Shimokawa, N., & Koibuchi, N. (2016). The change in
thyroid hormone signaling by altered training intensity