Review. Health Systems Tran. 7(1), 24-30.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre,
L. A., and Jemal, A. (2018). “ Global Cancer Statistics
2018: Globocan Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries”. CA: A
Cancer J. Clin. 68(6), 394-424.
Canadian Task Force on Preventive Health Care (2011).
“Recommendations on Screening for Breast Cancer
in Average-risk Women Aged 40-74 Years”. Cmaj,
183(17), 1991-2001.
David S. Strayer, E. R. (2014). Rubin’s Pathology: Clinico-
pathologic Foundations of Medicine (Pathology (Ru-
bin)) Seventh Edition. LWW.
Gelasca, E. D., Byun, J., Obara, B., and Manjunath, B.
(2008). “Evaluation and Benchmark for Biological Im-
age Segmentation”. In 2008 15th IEEE International
Conference on Image Processing, 1816-1819. IEEE.
Geron, A. (2019). Hands-on Machine Learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems Second Edition.
O'Reilly Media Inc.
Golatkar, A., Anand, D., and Sethi, A. (2018). “Classifica-
tion of Breast Cancer Histology using Deep Learning”.
In International Conference Image Analysis and
Recognition, 837-844. Springer.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep
Residual Learning for Image Recognition”. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 770-778.
Howard, J. and Gugger, S. (2020). Deep Learning for
Coders with fastai and PyTorch. O’Reilly Media Inc.
Institute of Medicine and National Research Council
(2005). Saving Women’s Lives: Strategies for Improving
Breast Cancer Detection and Diagnosis. The National
Academies Press, Washington, DC.
International Agency for Research on Cancer (2012). WHO
Classification of Tumours of the Breast [OP]
(Medicine) 4th Edition. World Health Organization.
Macenko, M., Niethammer, M., Marron, J. S., Borland, D.,
Woosley, J. T., Guan, X., Schmitt, C., and Thomas, N.
E. (2009). “A Method for Normalizing Histology Slides
for Quantitative Analysis”. In 2009 IEEE International
Symposium on Biomedical Imaging: From Nano to
Macro, 1107-1110. IEEE.
Marmot, M. G., Altman, D., Cameron, D., Dewar, J.,
Thompson, S., and Wilcox, M. (2013). “The Benefits
and Harms of Breast Cancer Screening: An
Independent Review”. British Journal of Cancer,
108(11), 2205.
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J.,
Antropova, N., Ashrafian, H., Back, T., Chesus, M.,
Corrado, G. C., Darzi, A., Etemadi, M., Garcia-
Vicente, F., Gilbert, F. J., Halling-Brown, M., Hass-
abis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J.,
King, D., Ledsam, J. R., Melnick, D., Mostofi, H.,
Peng, L., Reicher, J. J., Romera-Paredes, B., Side-
bottom, R., Suleyman, M., Tse, D., Young, K. C.,
De Fauw, J., and Shetty, S. (2020). “International
Evaluation of an AI System for Breast Cancer
Screening”. Nat. 577(7788), 89-94.
Millis, R. R. (1984). “Needle Biopsy of the Breast”. Monog.
Pathol. (25), 186-203.
Rakhlin, A., Shvets, A., Iglovikov, V., and Kalinin, A. A.
(2018). “Deep Convolutional Neural Networks for
Breast Cancer Histology Image Analysis”. In
International Conference Image Analysis and
Recognition, 737-744. Springer.
Skurichina, M. and Duin, R. P. (2002). “ Bagging,
Boosting and the Random Subspace Method for Linear
Classifiers”. Pattern Anal. Appl. 5(2), 121-135.
Smith, L. N. (2017). “Cyclical Learning Rates for Training
Neural Networks”. In 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), 464-472.
IEEE.
Sokolova, M. and Lapalme, G. (2009). “A Systematic
Analysis of Performance Measures for Classification
Tasks”. Infor. Proc. Manage. 45(4), 427-437.
Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte, L.
(2016). “A Dataset for Breast Cancer Histopathological
Image Classification”. IEEE Trans. on Biomedical
Engineering, 63(7), 1455-1462.
Stenkvist, B., Westman-Naeser, S., Holmquist, J., Nordin,
B., Bengtsson, E., Vegelius, J., Eriksson, O., and Fox,
C. H. (1978). “Computerized Nuclear Morphometry as
an Objective Method for Characterizing Human Cancer
Cell Populations”. Cancer Res. 38(12), 4688-4697.
Tabar, L., Vitak, B., Chen, T. H.-H., Yen, A. M.-F., Cohen,
A., Tot, T., Chiu, S. Y.-H., Chen, S. L.-S., Fann, J. C.
Y., Rosell, J., et al. (2011). “Swedish Two-county Trial:
Impact of Mammographic Screening on Breast Cancer
Mortality during 3 Decades”. Radiology, 260(3), 658-
663.
Vahadane, A., Peng, T., Sethi, A., Albarqouni, S., Wang,
L., Baust, M., Steiger, K., Schlitter, A. M., Esposito, I.,
and Navab, N. (2016). “Structure-preserving Color
Normalization and Sparse Stain Separation for
Histological Images. IEEE Transactions on Medical
Imaging, 35(8), 1962-1971.
World Health Organization (2018). Data Global Can- cer
Observatory 2018. https://gco.iarc.fr/today/data/
factsheets/populations/360-indonesia-fact-sheets.pdf.
Accessed: 2020-01-04.
Yan, R., Ren, F., Wang, Z., Wang, L., Zhang, T., Liu, Y.,
Rao, X., Zheng, C., and Zhang, F. (2020). Breast Cancer
Histopathological Image Classification using a Hybrid
Deep Neural Network. Meth. 173(1), 52-60.
Zhang, Y., Zhang, B., and Lu, W. (2011). Breast Can-
cer Classification from Histological Images with
Multiple Features and Random Subspace Classifier
Ensemble. In AIP Conference Proceedings, 1371(1),
19-28.