feature selection technique. Appl. Soft Comput., 98,
106823.
Jimenez, F., S´ anchez, G., Garcia, J. M., Sciavicco, G., &
Miralles, L. (2017). Multi-objective evolutionary
feature selection for online sales forecasting.
Neurocomputing, 234, 75– 92.
Karagoz, G. N., Yazici, A., Dokeroglu, T., & Cosar, A.
(2021). A new framework of multiobjective
evolutionary algorithms for feature selection and multi-
label classification of video data. Int. J. Mach. Learn
Cyb., 12(1), 53–71.
Khammassi, C., & Krichen, S. (2020). A NSGA2-lr
wrapper approach for feature selection in network
intrusion detection. Comput. Netw., 172, 107183.
Khan, A., & Baig, A. R. (2015). Multi-objective feature
subset selection using nondominated sorting genetic
algorithm. J. Appl. Res Technol., 13(1), 145–159.
Kimovski, D., Ortega, J., Ortiz, A., & Banos, R. (2015).
Parallel alternatives for evolutionary multi-objective
optimisation in unsupervised feature selection. Expert
Syst. Appl., 42(9), 4239–4252.
Kiziloz, H. E., Deniz, A., Dokeroglu, T., & Cosar, A.
(2018). Novel multiobjective TLBO algorithms for the
feature subset selection problem. Neurocomputing,
306, 94–107.
Koc, E. (2010). Bees Algorithm: theory, improvements and
applications. Cardiff University.
Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K.,
& Kou, S. (2021). Bankruptcy prediction for SMEs
using transactional data and two-stage multiobjective
feature selection. Decis. Support Syst., 140, 113429.
Kozodoi, N., Lessmann, S., Papakonstantinou, K.,
Gatsoulis, Y., & Baesens, B. (2019). A multi-objective
approach for profit-driven feature selection in credit
scoring. Decis. Support Syst., 120, 106–117.
Kundu, P. P., & Mitra, S. (2015). Multi-objective
optimisation of shared nearest neighbor similarity for
feature selection. Appl. Soft Comput., 37, 751–762.
Lai, C.-M. (2018). Multi-objective simplified swarm
optimisation with weighting scheme for gene selection.
Appl. Soft Comput., 65, 58–68.
Mlakar, U., Fister, I., Brest, J., & Potocnik, B. (2017).
Multi-objective differential evolution for feature
selection in facial expression recognition systems.
Expert Syst. Appl., 89, 129–137.
Mukhopadhyay, A., & Maulik, U. (2013). An svm-wrapped
multiobjective evolutionary feature selection approach
for identifying cancer-microrna markers. IEEE T.
Nanobiosci., 12(4), 275–281.
Nayak, S. K., Rout, P. K., Jagadev, A. K., & Swarnkar, T.
(2020). Elitism based multiobjective differential
evolution for feature selection: A filter approach with
an efficient redundancy measure. Journal of King Saud
University-Computer and Information Sciences, 32(2),
174–187.
Peimankar, A., Weddell, S. J., Jalal, T., & Lapthorn, A. C.
(2017). Evolutionary multiobjective fault diagnosis of
power transformers. Swarm Evol. Comput., 36, 62–75.
Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S.,
& Zaidi, M. (2005). The Bees Algorithm. Technical
Note, Cardiff University, UK.
Pham, D., Mahmuddin, M., Otri, S., & Al-Jabbouli, H.
(2007). Application of the Bees Algorithm to the
selection features for manufacturing data. In
International virtual conference on intelligent
production machines and systems (IPROMS 2007).
Ramlie, F., Muhamad, W. Z. A. W., Jamaludin, K. R.,
Cudney, E., & Dollah, R. (2020). A significant feature
selection in the mahalanobis taguchi system using
modified-bees algorithm. Int. J. Eng. Research and
Technology, 13(1), 117-136.
Rathee, S., & Ratnoo, S. (2020). Feature selection using
multi-objective CHC Genetic Algorithm. Procedia
Computer Science, 167, 1656–1664.
Rodrigues, D., de Albuquerque, V. H. C., & Papa, J. P.
(2020). A multi-objective Artificial Butterfly
Optimisation approach for feature selection. Appl. Soft
Comput., 94, 106442.
Rostami, M., Forouzandeh, S., Berahmand, K., & Soltani,
M. (2020). Integration of multiobjective PSO based
feature selection and node centrality for medical
datasets. Genomics, 112(6), 4370–4384.
Sahoo, A., & Chandra, S. (2017). Multi-objective Grey
Wolf optimiser for improved cervix lesion
classification. Appl. Soft Comput., 52, 64–80.
Sharma, A., & Rani, R. (2019). C-HMOSHSSA: Gene
selection for cancer classification using multi-objective
meta-heuristic and machine learning methods. Comput.
Meth. Prog. Bio., 178, 219–235.
Sohrabi, M. K., & Tajik, A. (2017). Multi-objective feature
selection for warfarin dose prediction. Comput. Biol.
Chem., 69, 126–133.
Tan, C. J., Lim, C. P., & Cheah, Y.-N. (2014). A multi-
objective evolutionary algorithmbased ensemble
optimiser for feature selection and classification with
neural network models. Neurocomputing, 125, 217–
228.
Vignolo, L. D., Milone, D. H., & Scharcanski, J. (2013).
Feature selection for face recognition based on multi-
objective evolutionary wrappers. Expert Syst. Appl.,
40(13), 5077–5084.
Wang, X.-h., Zhang, Y., Sun, X.-y., Wang, Y.-l., & Du, C.-
h. (2020). Multi-objective feature selection based on
Artificial Bee Colony: An acceleration approach with
variable sample size. Appl. Soft Comput., 88, 106041.
Wang, Z., Li, M., & Li, J. (2015). A multi-objective
evolutionary algorithm for feature selection based on
mutual information with a new redundancy measure.
Inform. Sciences, 307, 73–88.
Xia, H., Zhuang, J., & Yu, D. (2014). Multi-objective
unsupervised feature selection algorithm utilising
redundancy measure and negative epsilon-dominance
for fault diagnosis. Neurocomputing, 146, 113–124.
Xue, B., Cervante, L., Shang, L., Browne, W. N., & Zhang,
M. (2012). A multi-objective Particle Swarm
Optimisation for filter-based feature selection in
classification problems. Connect. Sci., 24(2-3), 91–116.