augmentation. However, by analysing the ROC
curve, both structures are still promising in
development of eye abnormality detection in further
research.
REFERENCES
Liu, J., Pan, Y., Li, M., Chen, Z., Tang, L., Lu, C., & Wang,
J. (2018, Mar). Applications of deep learning to MRI
images: a survey. Big Data Mining and Analytics, 1(1).
Pachade, S., Porwal, P., Thulkar, D., Kokare, M.,
Deshmukh, G., Sahasrabuddhe, V., . . . Mériaudeau, F.
(2021). Retinal fundus multi-disease image dataset
(RFMiD): a dataset for multi-disease detection
research. Data, 6(2).
doi:https://doi.org/10.3390/data6020014
Qummar, S., Khan, F. G., Shah, S., Khan, A.,
Shamshirband, S., Rehman, Z. U., . . . Jadoon, W.
(2019). A deep learning ensemble approach for diabetic
retinopathy detection. IEEE Access, 7, 150530-150539.
Roy, S., Menapace, W., Oei, S., Luijten, B., Fini, E., Saltori,
C., . . . Demi, L. (2020, Agt). Deep learning for
classification and localization of COVID-19 markers in
point-of-care lung ultrasound. IEEE Trans. on Medical
Imaging, 39(8).
Sarki, R., Ahmed, K., Wang, H., & Zhang, Y. (2020).
Automatic detection of diabetic eye disease through
deep learning using fundus images: a survey. IEEE
Access, 151133 - 151149.
Simonyan, K., & Zisserman, A. (2015). Very deep
convolutional networks for large-scale image
recognition. International Conference on Learning
Representations (ICLR). San Diego.
Soomro, T. A., Afifi, A. J., Zheng, L., Soomro, S., Gao, J.,
Hellwich, O., & Paul, M. (2019). Deep learning models
for retinal blood vessels segmentation: a review. IEEE
Access, 71696 - 71717.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., . . . Rabinovich, A. (2015). Going deeper
with convolutions. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), (pp. 2818-2826).
Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., & Hurst, R. T.
(2016, May). Convolutional neural networks for
medical image analysis: full training or fine tuning.
IEEE Trans. on Medical Imaging, 35(5).
WHO. (2019). World report on vision. World Health
Organization.