intrusions carried out by OWASP ZAP by utilizing
external resources to detect the types of incoming
attacks. From the results of the OWASP ZAP test, the
type of intrusion was Directory Brute force. Keris can
also alert the system admin about the dangers of
intrusion in real-time with a delay of 0.72 seconds
using the Telegram Webhook and 0.44 seconds when
using the FCM. This show that FCM is suitable more
than Telegram Webhook when we want to use real-
time notification.
For future research, it is expected to find out about
the other technology as the alerting mechanism to
resolve causes of the delay and then reduce the delay
time. Besides that, research can also be carried out by
utilizing the latest knowledge, such as machine
learning, to maximize Keris abilities.
REFERENCES
Abdur Rahman, M., Amjad, M., Ahmed, B., & Saeed
Siddik, M. (2020). Analyzing web application
vulnerabilities: An empirical study on e-commerce
sector in Bangladesh. ACM International Conference
Proceeding Series, 5–10. https://doi.org/10.1145/337
7049.3377107
Agarwal, N., & Hussain, S. Z. (2018). A Closer Look at
Intrusion Detection System for Web Applications.
Hindawi Security and Communication Networks, 2018,
1–27.
Albertengo, G., Debele, F. G., Hassan, W., & Stramandino,
D. (2019). On the performance of web services, google
cloud messaging and firebase cloud messaging. Digital
Communications and Networks, 6(1), 31–37.
https://doi.org/10.1016/j.dcan.2019.02.002
Baş Seyyar, M., Çatak, F. Ö., & Gül, E. (2018). Detection
of attack-targeted scans from the Apache HTTP Server
access logs. In Applied Computing and Informatics
(Vol. 14, Issue 1, pp. 28–36). Elsevier B.V.
https://doi.org/10.1016/j.aci.2017.04.002
Bizzle, J. (n.d.). Crawler Detect. Retrieved May 6, 2021,
from https://github.com/JayBizzle/Crawler-Detect
Candra, H., Rino, & Riki. (2020). Designing a Chatbot
Application for Student Information Centers on
Telegram Messenger Using Fulltext Search Boolean
Mode. Jurnal Bit-Tech, 2(2), 10–18.
Chora, M., & Kozik, R. (2017). Machine Learning
Techniques for Threat Modeling and Detection.
Security and Resilience in Intelligent Data-Centric
Systems and Communication Networks, 179–192.
https://doi.org/10.1016/B978-0-12-811373-8.00008-2
Dymora, P., & Paszkiewicz, A. (2020). Performance
analysis of selected programming languages in the
context of supporting decision-making processes for
industry 4.0. Applied Sciences (Switzerland), 10(23), 1–
17. https://doi.org/10.3390/app10238521
Fan, J., Li, Y., Wang, S., & Nguyen, T. N. (2020). A C/C++
Code Vulnerability Dataset with Code Changes and
CVE Summaries. Proceedings - 2020 IEEE/ACM 17th
International Conference on Mining Software
Repositories, MSR 2020, 508–512.
https://doi.org/10.1145/3379597.3387501
Haider, S., Akhunzada, A., Mustafa, I., Patel, T. B.,
Fernandez, A., Choo, K. K. R., & Iqbal, J. (2020). A
Deep CNN Ensemble Framework for Efficient DDoS
Attack Detection in Software Defined Networks. IEEE
Access, 8, 53972–53983. https://doi.org/10.1109/
ACCESS.2020.2976908
Jose, S., Malathi, D., Reddy, B., & Jayaseeli, D. (2018). A
Survey on Anomaly Based Host Intrusion Detection
System. Journal of Physics: Conference Series,
1000(1). https://doi.org/10.1088/1742-6596/1000/1/01
2049
Kozhevnikov, V. A., Sabinin, O. Y., & Shats, J. E. (2017).
Library Development For Creating Bots On Slack,
Telegram And Facebook Messengers. International
Scientific Journal Theoretical & Applied Science P-
ISSN:, 50(06), 59–62. https://doi.org/10.15863/TAS
Kritikos, K., Magoutis, K., Papoutsakis, M., & Ioannidis, S.
(2019). A survey on vulnerability assessment tools and
databases for cloud-based web applications. Array, 3–
4(October), 100011. https://doi.org/10.1016/j.array.20
19.100011
Krog, M. (2017). Nginx Ultimate Bad Bot and User-Agent
Blocker. https://github.com/mitchellkrogza/nginx-
ultimate-bad-bot-blocker
Ma, K., Jiang, R., Mianxiong, D., Jia, Y., & Li, A. (2017).
Neural Network Based Web Log Analysis for Web
Intrusion Detection. Springer International Publishing,
194–204. https://doi.org/10.1007/978-3-319-72395-2
Mir, S. Q., Mir, I. A., & Beiigh, B. M. (2018). Investigating
the denial of service attack : A major threat to internet
and the security of information. JK Research Journal in
Mathematics and Computer Sciences Investigating,
1(1), 121–131.
Pham, B. A., & Subburaj, V. H. (2020). Experimental setup
for Detecting SQLI Attacks using Machine Learning
Algorithms. 8(1), 79016.
Potinteu, I. C., & Varga, R. (2020). Detecting Injection
Attacks using Long Short Term Memory. Proceedings
- 2020 IEEE 16th International Conference on
Intelligent Computer Communication and Processing,
ICCP 2020, 163–169. https://doi.org/10.1109/
ICCP51029.2020.9266177
ProjectDiscovery. (n.d.). Nuclei - Community Powered
Vulnerability Scanner. Retrieved May 5, 2021, from
https://nuclei.projectdiscovery.io/templating-guide/
Rathore, S., Sharma, P. K., & Park, J. H. (2017).
XSSClassifier: An efficient XSS attack detection
approach based on machine learning classifier on SNSs.
Journal of Information Processing Systems, 13(4),
1014–1028. https://doi.org/10.3745/JIPS.03.0079
Sadikin, F., Deursen, T. van, & Kumar, S. (2020). A ZigBee
Intrusion Detection System for IoT using Secure and
Efficient Data Collection. Internet of Things, 12,
100306. https://doi.org/10.1016/j.iot.2020.100306
Sohal, A. S., Sandhu, R., Sood, S. K., & Chang, V. (2018).
A cybersecurity framework to identify malicious edge