according to the existing queue conditions, the test
results are as shown in Figure 6.
Figure 6: Object Tracking.
3.5 Testing Distance Object
Distance measurement is done using the perspective
model. Then, for distance estimation, Euclidian
Distance calculation is used to get the distance
between "People" objects. Based on the test results as
shown in Figure 7 using 12 distance data, the largest
error is 1.86% with a distance difference of 0.93 cm.
Figure 7: Distance Testing Graph.
4 CONCLUSION
From the testing that has been done, the results of this
research can be concluded that:
1. Based on the test results from 140 data, the
success of the system when classifying objects in
the form of masks, no masks, and people has an
average success of 92.67% with a safe detection
distance of 400 cm.
2. Based on the tests that have been carried out, the
distance calculation using the Euclidean Distance
calculation produces an average error of 4.591 %
with the largest distance error reaching 7.32 cm.
REFERENCES
Adhitya, R. Y., Khumaidi, A., Sarena, S. T., Kautsar, S.,
Widiawan, B., & Afriansyah, F. L. (2020). Applied
Haar Cascade and Convolution Neural Network for
Detecting Defects in the PCB Pathway. CENIM 2020 -
Proceeding: International Conference on Computer
Engineering, Network, and Intelligent Multimedia
2020, Cenim, 408–411.
https://doi.org/10.1109/CENIM51130.2020.9297996
Nishom, M. (2019). Perbandingan Akurasi Euclidean
Distance, Minkowski Distance, dan Manhattan
Distance pada Algoritma K-Means Clustering berbasis
Chi-Square. Jurnal Informatika: Jurnal
Pengembangan IT (JPIT), 4(1), 20–24.
https://doi.org/10.30591/jpit.v4i1.1253
Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-
CNN: Towards Real-Time Object Detection with
Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6),
1137–1149.
https://doi.org/10.1109/TPAMI.2016.2577031
Rinanto, N., & Khumaidi, A. (2015). Aplikasi Android-
Raspberry Pi Pada Kapal Tanpa Awak Untuk Pencarian
Korban Kecelakaan Laut. Jurnal SISFO : Inspirasi
Profesional Sistem Informasi, 05(04).
https://doi.org/10.24089/j.sisfo.2015.09.003
Salim, A. (2020). Estimasi Kecepatan Kendaraan Melalui
Video Pengawas Lalu Lintas Menggunakan Parallel
Line Model.
Timur, G. J. (2020). Surat Edaran Pengendalian,
Pengawasan Dan Penegakan Hukum Dalam
Pelaksanaan Pembatasan Sosial Berskala Besar Di
Jawa Timur. http://files.bpbd.jatimprov.go.id/
KEDARURATAN/COVID19/PRODUK HUKUM
DAN KEBIJAKAN/PEMERINTAH PROVINSI/SE
GUB PSBB.pdf
A. Khumaidi, E. M. Yuniarno and M. H. Purnomo,. (2017).
"Welding defect classification based on convolution
neural network (CNN) and Gaussian kernel," 2017
International Seminar on Intelligent Technology and Its
Applications (ISITIA), Surabaya, 2017, pp. 261-265,
doi: 10.1109/ISITIA.2017.8124091
A. Budianto et al. (2017). "Analysis of artificial intelligence
application using back propagation neural network and
fuzzy logic controller on wall-following autonomous
mobile robot," 2017 International Symposium on
Electronics and Smart Devices (ISESD), Yogyakarta,
pp. 62-66, doi: 10.1109/ISESD.2017.8253306
R. Y. Putra et al.(2016). "Neural network implementation
for invers kinematic model of arm drawing robot," 2016
International Symposium on Electronics and Smart
Devices (ISESD), Bandung, pp. 153-157, doi:
10.1109/ISESD.2016.7886710
S. R. Dewi, (2018). “Deep Learning Object Detection Pada
Video Menggunakan Tensorflow dan Convolutional
Neural Network,”