thickness for myringoplasty using frequency
response analysis but did not include dynamic
behavior, such as natural frequency and mode shape.
In order to clarify this result, the natural frequency
and mode shape of the human tympanic membrane
using the actual shape to define the optimum
thickness of sliced cartilage myringoplasty.
4
CONCLUSIONS
The effect of various thicknesses on the natural
frequency of the human middle ear system during
myringoplasty was examined in this study.
Eigenvalue analysis of the tympanic membrane with
a flat elliptic shape had been carried out to obtain the
natural frequencies and mode shapes. The first and
second natural frequencies and modes shapes for each
model had been compared. The value of around 0.4
mm was defined as the thickness of sliced cartilage in
myringoplasty.
REFERENCES
Caminos, L., Garcia-Manrique, J., Lima-Rodriguez, A., &
Gonzalez-Herrera, A. (2018). Analysis of the
mechanical properties of the human tympanic
membrane and its influence on the dynamic
behaviour of the human hearing system. Applied
Bionics and Biomechanics
,
2018. https://doi.
org/10.1155/2018/1736957
De Greef, D., Aernouts, J., Aerts, J., Cheng, J. T., Horwitz,
R., Rosowski, J. J., & Dirckx, J. J. J. (2014).
Viscoelastic properties of the human tympanic
membrane studied with stroboscopic holography and
finite element modeling. Hearing Research,
312(2014), 69–80. https://doi.org/10.1016/j.heares.
2014.03.002
Ghadarghadar, N., Agrawal, S. K., Samani, A., & Ladak,
H. M. (2013). Estimation of the quasi-static Young’s
modulus of the eardrum using a pressurization
technique. Computer Methods and Programs in
Biomedicine
,
110(3), 231–239.
https://doi.org/10.1016/j.cmpb.2012.11.006 Hidayat, H.,
Sudarsono, S., Aviva, D., & Othman, R. (2019).
Frequency response of the human middle ear system
with eardrum perforation. IJSTR, 8(4).
Hidayat, Sudarsono, & Othman, R. (2020). Dynamic
Behavior of Human Tympanic Membrane
Perforation
Using Finite Element Method. IOP Conference
Series: Materials Science and
Engineering
,
797,
12025.https://doi.org/10.1088/1757-899x/797/1/012025
Lee, C. F., Chen, J. H., Chou, Y. F., Hsu, L. P., Chen, P. R.,
& Liu, T. C. (2007). Optimal graft thickness for
different sizes of tympanic membrane perforation in
cartilage myringoplasty: A finite element analysis.
Laryngoscope
,
117
(4),
725–730. https://doi.org/10.
1097/mlg.0b013e318031f0e7
Mehta, R. P., Rosowski, J. J., Voss, S. E., O’Neil, E., &
Merchant, S. N. (2006). Determinants of hearing loss in
perforations of the tympanic membrane. Otology
and
Neurotology
,
27(2), 136–143. https://doi.org/10.1097/
01.mao.0000176177.17636. 53
Voss, S. E., Rosowski, J. J., Merchant, S. N., & Peake, W.
T. (2001). Middle-ear function with tympanic-
membrane perforations. II. A simple model. The
Journal of the Acoustical Society of America, 110(3),
1445–1452. https://doi.org/10.1121/1.1394196
Zahnert, T., Hüttenbrink, K. B., Mürbe, D., & Bornitz, M.
(2000). Experimental investigations of the use of
cartilage in tympanic membrane reconstruction.
American Journal of Otology, 21(3), 322–328.
https://doi.org/10.1016/s0196-0709(00)80039-3