8 CONCLUSIONS
A constrained quaternion extended Kalman filter
CQEKF is proposed. The norm constraint is projected
on the derivation of the EKF gain. Two forms of the
constraint are obtained, both have the same effect.
The obtained CQEKF preserves the unity norm
constraint for the quaternion during the running of the
algorithm. The results show that unity norm is
preserved even sudden changes to the states may
occur.
REFERENCES
Simon, D. (2006). Optimal state estimation: Kalman, H
infinity, and nonlinear approaches. John Wiley & Sons.
Grewal, M. S., & AP, A. K. (2001). Filtering: Theory and
Practice Using MATLAB 2nded.
Maybeck, P. S. (1982). Stochastic models, estimation, and
control. Academic press.
Ulrich, S., & Sasiadek, J. Z. (2011, June). Extended Kalman
filtering for flexible joint space robot control. In
Proceedings of the 2011 American control conference
(pp. 1021-1026). IEEE.
Jassemi-Zargani, R., & Necsulescu, D. (2002). Extended
Kalman filter-based sensor fusion for operational space
control of a robot arm. IEEE Transactions on
Instrumentation and Measurement, 51(6), 1279-1282.
Hedberg, E., Norén, J., Norrlöf, M., & Gunnarsson, S.
(2017). Industrial robot tool position estimation using
inertial measurements in a complementary filter and an
EKF. IFAC-PapersOnLine, 50(1), 12748-12752.
Bussi, U., Mazzone, V., & Oliva, D. (2017, September).
Control strategies analysis using EKF applied to a
mobile robot. In 2017 XVII Workshop on Information
Processing and Control (RPIC) (pp. 1-6). IEEE.
Xu, Y., Shmaliy, Y. S., Ahn, C. K., Tian, G., & Chen, X.
(2018). Robust and accurate UWB‐based indoor robot
localisation using integrated EKF/EFIR filtering. IET
radar, sonar & navigation, 12(7), 750-756.
Phuong, N. H. Q., Kang, H. J., Suh, Y. S., & Ro, Y. S.
(2009). A DCM based orientation estimation algorithm
with an inertial measurement unit and a magnetic
compass. Journal of Universal Computer Science,
15(4), 859-876.
Murray, R. M., Li, Z., & Sastry, S. S. (1994). A
mathematical introduction to robotic manipulation
CRC Press. Boca Raton, FL.
Choukroun, D., Bar-Itzhack, I. Y., & Oshman, Y. (2006).
Novel quaternion Kalman filter. IEEE Transactions on
Aerospace and Electronic Systems, 42(1), 174-190.
Kim, A., & Golnaraghi, M. F. (2004, April). A quaternion-
based orientation estimation algorithm using an inertial
measurement unit. In PLANS 2004. Position Location
and Navigation Symposium (IEEE Cat. No.
04CH37556) (pp. 268-272). IEEE.
Suh, Y. S. (2010). Orientation estimation using a
quaternion-based indirect Kalman filter with adaptive
estimation of external acceleration. IEEE Transactions
on Instrumentation and Measurement, 59(12), 3296-
3305.
Hashlamon, I. (2010). Experimental verification of an
orientation estimation technique for autonomous
robotic platforms (Doctoral dissertation).
Lefferts, E. J., Markley, F. L., & Shuster, M. D. (1982).
Kalman filtering for spacecraft attitude estimation.
Journal of Guidance, Control, and Dynamics, 5(5),
417-429.
Simon, D. (2010). Kalman filtering with state constraints: a
survey of linear and nonlinear algorithms. IET Control
Theory & Applications, 4(8), 1303-1318.
Roetenberg, D. (2006). Inertial and magnetic sensing of
human motion (p. 126). These de doctorat.
Hashlamon, I. (2020). A new adaptive extended Kalman
filter for a class of nonlinear systems. Journal of
Applied and Computational Mechanics, 6(1), 1-12.