behavior, 15(1), 62–73.
https://doi.org/10.1111/gbb.12257
Bova A, Gaidica M, Hurst A, Iwai Y, Hunter J, Leventhal
DK. (2020). Precisely timed dopamine signals establish
distinct kinematic representations of skilled
movements. Elife. Nov 27; 9: e61591. doi:
10.7554/eLife.61591. PMID: 33245045; PMCID:
PMC7861618.
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O.
(2010). Dopamine in motivational control: rewarding,
aversive, and alerting. Neuron, 68(5), 815–834.
https://doi.org/10.1016/j.neuron.2010.11.022
Burnham J. C. (1972). Thorndike's puzzle boxes. Journal of
the history of the behavioral sciences, 8, 159–167.
https://doi.org/10.1002/1520-
6696(197204)8:2<159::aid-jhbs2300080202>3.0.co;2
Glover G. H. (2011). Overview of functional magnetic
resonance imaging. Neurosurgery clinics of North
America, 22(2), 133–vii.
https://doi.org/10.1016/j.nec.2010.11.001
Haber S. N. (2014). The place of dopamine in the cortico-
basal ganglia circuit. Neuroscience, 282, 248–257.
https://doi.org/10.1016/j.neuroscience.2014.10.008
Ikemoto S, Wise RA. (2004). Mapping of chemical trigger
zones for reward. Neuropharmacology. 47 Suppl
1:190-201. doi: 10.1016/j.neuropharm.2004.07.012.
PMID: 15464137.
Ikemoto S. (2003). Involvement of the olfactory tubercle in
cocaine reward: intracranial self-administration
studies. The Journal of neuroscience: the official
journal of the Society for Neuroscience, 23(28), 9305-
9311. https://doi.org/10.1523/JNEUROSCI.23-28-
09305.2003
Ikemoto S. (2007). Dopamine reward circuitry: two
projection systems from the ventral midbrain to the
nucleus accumbens-olfactory tubercle complex. Brain
research reviews, 56(1), 27–78.
https://doi.org/10.1016/j.brainresrev.2007.05.004
Kashtelyan, V., Lichtenberg, N. T., Chen, M. L., Cheer, J.
F., & Roesch, M. R. (2014). Observation of reward
delivery to a conspecific modulates dopamine release
in ventral striatum. Current biology : CB, 24(21), 2564–
2568. https://doi.org/10.1016/j.cub.2014.09.016
Leventhal D, Bova A. (2020). Precisely-timed dopamine
signals establish distinct kinematic representations of
skilled movements. figshare.
Lichtenberg, N. T., Lee, B., Kashtelyan, V., Chappa, B. S.,
Girma, H. T., Green, E. A., Kantor, S., Lagowala, D.
A., Myers, M. A., Potemri, D., Pecukonis, M. G.,
Tesfay, R. T., Walters, M. S., Zhao, A. C., Blair, R.,
Cheer, J. F., & Roesch, M. R. (2018). Rat behavior and
dopamine release are modulated by conspecific
distress. eLife, 7, e38090.
https://doi.org/10.7554/eLife.38090
Lindahl, M., & Hellgren Kotaleski, J. (2017). Untangling
Basal Ganglia Network Dynamics and Function: Role
of Dopamine Depletion and Inhibition Investigated in a
Spiking Network Model. eNeuro, 3(6),
ENEURO.0156-16.2016.
https://doi.org/10.1523/ENEURO.0156-16.2016
McCutcheon, J. E. etc. (2012). Encoding of aversion by
dopamine and the nucleus accumbens. Frontiers in
neuroscience, 6, 137.
https://doi.org/10.3389/fnins.2012.00137
Meder, D., Herz, D. M., Rowe, J. B., Lehéricy, S., &
Siebner, H. R. (2019). The role of dopamine in the brain
- lessons learned from Parkinson's disease.
NeuroImage, 190, 79–93.
Morita, K., & Kato, A. (2018). A Neural Circuit
Mechanism for the Involvements of Dopamine in
Effort-Related Choices: Decay of Learned Values,
Secondary Effects of Depletion, and Calculation of
Temporal Difference Error. eNeuro, 5(1),
ENEURO.0021-18.2018.
https://doi.org/10.1523/ENEURO.0021-18.2018
Oleson, E. B., etc. (2012). Subsecond dopamine release in
the nucleus accumbens predicts conditioned
punishment and its successful avoidance. The Journal
of neuroscience: the official journal of the Society for
Neuroscience, 32(42), 14804–14808.
Opara, J., Małecki, A., Małecka, E., & Socha, T. (2017).
Motor assessment in Parkinson`s disease. Annals of
agricultural and environmental medicine: AAEM,
24(3), 411–415.
https://doi.org/10.5604/12321966.1232774
Radhakrishnan, D. M., & Goyal, V. (2018). Parkinson's
disease: A review. Neurology India, 66(Supplement),
S26–S35. https://doi.org/10.4103/0028-3886.226451
Seppi, K., Ray Chaudhuri, K., & the collaborators of the
Parkinson's Disease Update on Non-Motor Symptoms
Study Group on behalf of the Movement Disorders
Society Evidence-Based Medicine Committee (2019)
Movement disorders : official journal of the Movement
Disorder Society, 34(2), 180-198.
https://doi.org/10.1002/mds.27602
Sveinbjornsdottir S. (2016). The clinical symptoms of
Parkinson's disease. Journal of neurochemistry, 139
Suppl 1, 318–324. https://doi.org/10.1111/jnc.13691
Tocchio, S., Kline-Fath, B., Kanal, E., Schmithorst, V. J.,
& Panigrahy, A. (2015). MRI evaluation and safety in
the developing brain. Seminars in perinatology, 39(2),
73–104. https://doi.org/10.1053/j.semperi.2015.01.002
Villanueva-Meyer, J. E., Mabray, M. C., & Cha, S. (2017).
Current Clinical Brain Tumor Imaging. Neurosurgery,
81(3), 397–415. https://doi.org/10.1093/neuros/nyx103
Wang, J.X., Kurth-Nelson, Z., Kumaran, D. et al. (2018).
Prefrontal cortex as a meta-reinforcement learning
system. Nat Neurosci 21, 860–868.
https://doi.org/10.1038/s41593-018-0147-8
Wang, K. S., Smith, D. V., & Delgado, M. R. (2016). Using
fMRI to study reward processing in humans: past,
present, and future. Journal of neurophysiology,
115(3), 1664–1678.
https://doi.org/10.1152/jn.00333.2015
Willard, A. M., Bouchard, R. S., & Gittis, A. H. (2015).
Differential degradation of motor deficits during
gradual dopamine depletion with 6-hydroxydopamine
in mice. Neuroscience, 301, 254–267.
https://doi.org/10.1016/j.neuroscience.2015.05.068