Li, Y. S.; Bux, H.; Feldhoff, A.; Li, G. L.; Yang, W. S.; Caro,
J. Controllable synthesis of metal–organic frameworks:
From MOF nanorods to oriented MOF membranes.
Advanced Materials 2010, 22, 3322-3326.
Li, Y.; Zhou, J.; Wang, L.; Xie, Z. Endogenous hydrogen
sulfide-triggered MOF-based nanoenzyme for synergic
cancer therapy. ACS Applied Materials & Interfaces
2020, 12, 30213-30220.
Lin, R.-B.; Zhang, Z.; Chen, B. Achieving High
Performance Metal–Organic Framework Materials
through Pore Engineering. Accounts of Chemical
Research 2021, 141-144.
Lin, W.; Rieter, W. J.; Taylor, K. M. Modular synthesis of
functional nanoscale coordination polymers.
Angewandte Chemie International Edition 2009, 48,
650-658.
Lu, J.; Yang, L.; Zhang, W.; Li, P.; Gao, X.; Zhang, W.;
Wang, H.; Tang, B. Photodynamic therapy for hypoxic
solid tumors via Mn-MOF as a photosensitizer.
Chemical Communications 2019, 55, 10792-10795.
Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Weichselbaum,
R. R.; Lin, W. Chlorin-based nanoscale metal–organic
framework systemically rejects colorectal cancers via
synergistic photodynamic therapy and checkpoint
blockade immunotherapy. Journal of the American
Chemical Society 2016, 138, 12502-12510.
Ma, T.; Liu, Y.; Wu, Q.; Luo, L.; Cui, Y.; Wang, X.; Chen,
X.; Tan, L.; Meng, X. Quercetin-modified metal–
organic frameworks for dual sensitization of
radiotherapy in tumor tissues by inhibiting the carbonic
anhydrase IX. Acs Nano 2019, 13, 4209-4219.
Motegi, H.; Yano, K.; Setoyama, N.; Matsuoka, Y.; Ohmura,
T.; Usuki, A. A facile synthesis of UiO-66 systems and
their hydrothermal stability. Journal of Porous Materials
2017, 24, 1327-1333.
Ni, Z.; Masel, R. I. Rapid production of metal− organic
frameworks via microwave-assisted solvothermal
synthesis. Journal of the American Chemical Society
2006, 128, 12394-12395.
Pallach, R.; Keupp, J.; Terlinden, K.; Frentzel-Beyme, L.;
Kloß, M.; Machalica, A.; Kotschy, J.; Vasa, S. K.;
Chater, P. A.; Sternemann, C. Frustrated flexibility in
metal-organic frameworks. Nature Communications
2021, 12, 1-12.
Rieter, W. J.; Taylor, K. M.; An, H.; Lin, W.; Lin, W.
Nanoscale metal− organic frameworks as potential
multimodal contrast enhancing agents. Journal of the
American Chemical Society 2006, 128, 9024-9025.
Robison, L.; Zhang, L.; Drout, R. J.; Li, P.; Haney, C. R.;
Brikha, A.; Noh, H.; Mehdi, B. L.; Browning, N. D.;
Dravid, V. P. A bismuth metal–organic framework as a
contrast agent for X-ray computed tomography. ACS
Applied Bio Materials 2019, 2, 1197-1203.
Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang,
Z.; Yan, H.; Cui, C.; Tan, W. Metal–organic framework
nanocarriers for drug delivery in biomedical
applications. Nano-Micro Letters 2020, 12, 1-29.
Taddei, M.; Casati, N.; Steitz, D. A.; Dümbgen, K. C.; van
Bokhoven, J. A.; Ranocchiari, M. In situ high-resolution
powder X-ray diffraction study of UiO-66 under
synthesis conditions in a continuous-flow microwave
reactor. CrystEngComm 2017, 19, 3206-3214.
Tang, J.; Chen, L.; Li, J.; Wang, Z.; Zhang, J.; Zhang, L.;
Luo, Y.; Wang, X. Selectively enhanced red
upconversion luminescence and phase/size
manipulation via Fe 3+ doping in NaYF 4: Yb, Er
nanocrystals. Nanoscale 2015, 7, 14752-14759.
Teng, J.; Chen, M.; Xie, Y.; Wang, D.; Jiang, J.-J.; Li, G.;
Wang, H.-P.; Fan, Y.; Wei, Z.-W.; Su, C.-Y.
Hierarchically Porous Single Nanocrystals of
Bimetallic Metal–Organic Framework for Nanoreactors
with Enhanced Conversion. Chemistry of Materials
2018, 30, 6458-6468.
Wang, W.; Wang, L.; Li, Y.; Liu, S.; Xie, Z.; Jing, X.
Nanoscale polymer metal–organic framework hybrids
for effective photothermal therapy of colon cancers.
Advanced Materials 2016, 28, 9320-9325.
Wu, B.; Lin, X.; Ge, L.; Wu, L.; Xu, T. A novel route for
preparing highly proton conductive membrane
materials with metal-organic frameworks. Chemical
Communications 2013, 49, 143-145.
Wu, W.; Jiang, C. Z.; Roy, V. A. Designed synthesis and
surface engineering strategies of magnetic iron oxide
nanoparticles for biomedical applications. Nanoscale
2016, 8, 19421-19474.
Yaghi, O.; Li, H. Hydrothermal synthesis of a metal-organic
framework containing large rectangular channels.
Journal of the American Chemical Society 1995, 117,
10401-10402.
Yang, D.; Gates, B. C. Catalysis by metal organic
frameworks: perspective and suggestions for future
research. Acs Catalysis 2019, 9, 1779-1798.
Yuan, W.; Garay, A. L.; Pichon, A.; Clowes, R.; Wood, C.
D.; Cooper, A. I.; James, S. L. Study of the
mechanochemical formation and resulting properties of
an archetypal MOF: Cu3 (BTC) 2 (BTC= 1, 3, 5-
benzenetricarboxylate). CrystEngComm 2010, 12,
4063-4065.
Zhang, T.; Wang, L.; Ma, C.; Wang, W.; Ding, J.; Liu, S.;
Zhang, X.; Xie, Z. BODIPY-containing nanoscale
metal–organic frameworks as contrast agents for
computed tomography. Journal of Materials Chemistry
B 2017, 5, 2330-2336.
Zhang, Y.; Wang, F.; Liu, C.; Wang, Z.; Kang, L.; Huang,
Y.; Dong, K.; Ren, J.; Qu, X. Nanozyme decorated
metal–organic frameworks for enhanced photodynamic
therapy. ACS nano 2018, 12, 651-661.
Zhao, J.; Li, H.; Han, Y.; Li, R.; Ding, X.; Feng, X.; Wang,
B. Chirality from substitution: enantiomer separation
via a modified metal–organic framework. Journal of
Materials Chemistry A 2015, 3, 12145-12148.
Zhou, H.; Fu, C.; Chen, X.; Tan, L.; Yu, J.; Wu, Q.; Su, L.;
Huang, Z.; Cao, F.; Ren, X. Mitochondria-targeted
zirconium metal–organic frameworks for enhancing the
efficacy of microwave thermal therapy against tumors.
Biomaterials science 2018, 6, 1535-1545.