Arnoldt, A., König, S., Mikut, R., & Bretschneider, P.
(2010). Application of Data Mining Methods for Power
Forecast of Wind Power Plants. Proc., 9th International
Workshop on Large-scale Integration of Wind Power
and Transmission Networks for Offshore Wind Farms,
Quebec.
Aurino, F., Folla, M., Gargiulo, F., Moscato, V., Picariello,
A., & Sansone, C. (2014). One-class SVM based
approach for detecting anomalous audio events.
International Conference on Intelligent Networking and
Collaborative Systems, (pp. 145-151). IEEE.
Bernhard, J., Schulik, T., Schutera, M., & Sax, E. (2021/2).
Adaptive test case selection for DNN-based perception
functions. IEEE International Symposium on Systems
Engineering (ISSE), (pp. 1-7). IEEE.
Bernhard, J., Schutera, M., & Sax, E. (2021/1). Optimizing
test-set diversity: Trajectory clustering for scenario-
based testing of automated driving systems. IEEE
International Intelligent Transportation Systems
Conference (ITSC), (pp. 1371-1378). IEEE.
Chan, C. F., & Eric, W. M. (2010). An abnormal sound
detection and classification system for surveillance
applications. 18th European Signal Processing
Conference, (pp. 1851-1855). IEEE,
Chang, F. K., Markmiller, J. F., Yang, J., & Kim, Y. (2011).
Structural health monitoring. System health
management: with aerospace applications. John Wiley
& Sons.
Dufaux, A., Besacier, L., Ansorge, M., & Pellandini, F.
(2000). Automatic sound detection and recognition for
noisy environment. 10th European Signal Processing
Conference. IEEE.
Feng, Y., Qiu, Y., Crabtree, C. J., Long, H., & Tavner, P. J.
(2013). Monitoring wind turbine gearboxes. (W. O.
Library, Ed.) Wind Energy, 16(5), 728-740.
Gautam, J. K., Kumar, A., & Saxena, R. (1996). On the
modified Bartlett-Hanning window (family). IEEE
Transactions on Signal Processing, 44(8), 2098-2102.
Gong, X., & Qiao, W. (2014). Current-based mechanical
fault detection for direct-drive wind turbines via
synchronous sampling and impulse detection. (IEEE,
Ed.) IEEE Transactions on Industrial Electronics, 62(3),
1693-1702.
Hofmockel, J., & Sax, E. (2018). Isolation Forest for
Anomaly Detection in Raw Vehicle Sensor Data.
International Conference on Vehicle Technology and
Intelligent Transport Systems (VEHITS).
Kawaguchi, Y., & Endo, T. (2017). How can we detect
anomalies from subsampled audio signals? 27th IEEE
International Workshop on Machine Learning for
Signal Processing (MLSP), (pp. 1-6). IEEE.
Koizumi, Y. a. (2018). Unsupervised detection of
anomalous sound based on deep learning and the
neyman- pearson lemma. IEEE/ACM Trans-actions on
Audio, Speech, and Language Processing. 27(1), 212-
224.
Koizumi, Y., Saito, S., Uematsu, H., Harada, N., & Imoto,
K. (2019). ToyADMOS: A dataset of miniature-
machine operating sounds for anomalous sound
detection. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), (pp.
313-317). IEEE.
Koizumi, Y., Kawaguchi, Y., Imoto, K., Nakamura, T.,
Nikaido, Y., Tanabe, R., ... & Harada, N. (2020).
Description and discussion on DCASE2020 challenge
task2: Unsupervised anomalous sound detection for
machine condition monitoring. arXiv preprint
arXiv:2006.05822.
Masino, J., Pinay, J., Reischl, M., & Gauterin, F. (2017).
Road surface prediction from acoustical measurements
in the tire cavity using support vector machine. Applied
Acoustics, 125 41-48.
Purohit, H., Tanabe, R., Ichige, K., Endo, T., Nikaido, Y.,
Suefusa, K., & Kawaguchi, Y. (2019). MIMII Dataset:
Sound Dataset for Malfunctioning Industrial Machine
Investigation and Inspection. Proceedings of the
Detection and Classification of Acoustic Scenes and
Events 2019 Workshop (DCASE2019), (pp. 209-213).
Schutera, M., Hafner, F. M., Vogt, H., Abhau, J., & Reischl,
M. (2019). Domain is of the Essence: Data Deployment
for City-Scale Multi-Camera Vehicle Re-Identification.
16th IEEE Inter-national Conference on Advanced
Video and Signal Based Surveillance (AVSS). (pp 1-6).
IEEE.
Schutera, M., Hussein, M., Abhau, J., Mikut, R., & Reischl,
M. (2020). Night-to-Day: Online Image-to-Image
Translation for Object Detection Within Autonomous
Driving by Night. IEEE Trans-actions on Intelligent
Vehicles.
Serizel, R., & Turpault, N. (2019). Sound event detection
from partially annotated data: Trends and challenges.
IcETRAN conference.
Sharma, S., & Mahto, D. G. (2013). Condition monitoring
of wind turbines: a review. Global Journal of
Researches in Engineering, Mechanical and Mechanics
Engineering, 13(6).
Sheng, S. (2011/2). Investigation of various condition
monitoring techniques based on a damaged wind turbine
gearbox (No. NREL/CP-5000-51753). National
Renewable Energy Lab.(NREL), Golden, CO (United
States).
Sheng, S. (2014). Wind turbine gearbox condition moni-
toring vibration analysis benchmarking datasets.
National Renewable Energy Laboratory, Golden.
Sheng, S., Link, H., LaCava, W., van Dam, J., McNiff, B.,
Veers, P., ... & Oyague, F. (2011/1). Wind turbine
drivetrain condition monitoring during GRC phase 1
and phase 2 testing (No. NREL/TP-5000-52748).
National Renewable Energy Lab.(NREL), Golden, CO
(United States).
Wang, L., Zhang, Z., Long, H., Xu, J., & Liu, R. (2016).
Wind turbine gearbox failure identification with deep
neural networks. IEEE Transactions on Industrial
Informatics, 13(3), 1360-1368.
Zappalá, D., Tavner, P. J., Crabtree, C. J., & Sheng, S.
(2014). Side-band algorithm for automatic wind turbine
gearbox fault detection and diagnosis. (W. O. Library,
Ed.) IET Renewable Power Generation, 8(4), 380-389.