Quirchmayr, G., Basl, J., You, I., Xu, L., and Weippl,
E., editors, Multidisciplinary Research and Practice
for Information Systems, pages 58–72, Berlin, Heidel-
berg. Springer Berlin Heidelberg.
Hofman, J. M., Goldstein, D. G., and Hullman, J. (2020).
How visualizing inferential uncertainty can mislead
readers about treatment effects in scientific results. In
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–12.
Hullman, J., Qiao, X., Correll, M., Kale, A., and Kay, M.
(2019). In pursuit of error: A survey of uncertainty
visualization evaluation. IEEE transactions on visual-
ization and computer graphics, 25(1):903–913.
Kleemann, T. and Ziegler, J. (2020). Distribution sliders:
visualizing data distributions in range selection slid-
ers. In Proceedings of the Conference on Mensch und
Computer, pages 67–78.
Kosara, R. and Miksch, S. (2002). Visualization meth-
ods for data analysis and planning in medical applica-
tions. International Journal of Medical Informatics,
68(1):141 – 153.
LaViola Jr, J. J. and Zeleznik, R. C. (2004). Mathpad 2: a
system for the creation and exploration of mathemati-
cal sketches. ACM Transactions on Graphics (TOG),
23(3):432–440.
Lee, Y. J., Zitnick, C. L., and Cohen, M. F. (2011). Shadow-
draw: real-time user guidance for freehand drawing.
In ACM Transactions on Graphics (TOG), volume 30,
page 27. ACM.
Lipkus, I. M., Samsa, G., and Rimer, B. K. (2001). General
performance on a numeracy scale among highly edu-
cated samples. Medical Decision Making, 21(1):37–
44. PMID: 11206945.
MacEachren, A. M., Roth, R. E., O’Brien, J., Li, B., Swing-
ley, D., and Gahegan, M. (2012). Visual semiotics &
uncertainty visualization: An empirical study. IEEE
Transactions on Visualization and Computer Graph-
ics, 18(12):2496–2505.
Marty, R. (2009). Applied security visualization. Addison-
Wesley Upper Saddle River.
Merten, W. (1966). Pert and planning for health programs.
Public Health Reports, 81(5):449.
Microsoft (2021). Project help & learning.
https://support.microsoft.com/en-GB/project. [On-
line; accessed 2021-09-09].
Newman, G. E. and Scholl, B. J. (2012). Bar graphs de-
picting averages are perceptually misinterpreted: The
within-the-bar bias. Psychonomic bulletin & review,
19(4):601–607.
Pinedo, M. (2012). Scheduling, volume 29. Springer.
Procopio, M., Mosca, A., Scheidegger, C. E., Wu, E., and
Chang, R. (2021). Impact of cognitive biases on pro-
gressive visualization. IEEE Transactions on Visual-
ization and Computer Graphics, pages 1–1.
Roberts, J. C., Headleand, C., and Ritsos, P. D. (2015).
Sketching designs using the five design-sheet method-
ology. IEEE transactions on visualization and com-
puter graphics, 22(1):419–428.
Sauro, J. (2011). A practical guide to the system usabil-
ity scale: Background, benchmarks & best practices.
Measuring Usability LLC.
Shen, I.-C., Liu, K.-H., Su, L.-W., Wu, Y.-T., and Chen,
B.-Y. (2021). Clipflip: Multi-view clipart design. In
Computer Graphics Forum, volume 40, pages 327–
340. Wiley Online Library.
Shipman, F. M. and Marshall, C. C. (1999). Formality con-
sidered harmful: Experiences, emerging themes, and
directions on the use of formal representations in in-
teractive systems. Computer Supported Cooperative
Work (CSCW), 8(4):333–352.
Shneiderman, B. (2003). The eyes have it: A task by data
type taxonomy for information visualizations. In The
craft of information visualization, pages 364–371. El-
sevier.
Sondag, M., Meulemans, W., Schulz, C., Verbeek, K.,
Weiskopf, D., and Speckmann, B. (2020). Uncertainty
treemaps. In 2020 IEEE Pacific Visualization Sympo-
sium (PacificVis), pages 111–120.
Tversky, A. and Kahneman, D. (1983). Extensional versus
intuitive reasoning: The conjunction fallacy in proba-
bility judgment. Psychological review, 90(4):293.
Wallsten, T. S., Zwick, R., Forsyth, B., Budescu, D. V., and
Rappaport, A. (1988). Measuring the vague meanings
of probability terms. Technical report, NORTH CAR-
OLINA UNIV AT CHAPEL HILL.
Wang, B., Ruchikachorn, P., and Mueller, K. (2013).
Sketchpadn-d: Wydiwyg sculpting and editing in
high-dimensional space. IEEE Transactions on Visu-
alization and Computer Graphics, 19(12):2060–2069.
Zeleznik, R., Miller, T., Li, C., and LaViola, J. J.
(2008). Mathpaper: Mathematical sketching with
fluid support for interactive computation. In Interna-
tional Symposium on Smart Graphics, pages 20–32.
Springer.
Zheng, R., Fern
´
andez Camporro, M., Romat, H.,
Henry Riche, N., Bach, B., Chevalier, F., Hinckley, K.,
and Marquardt, N. (2021). Sketchnote components,
design space dimensions, and strategies for effective
visual note taking. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems,
pages 1–15.
Interactive Input and Visualization for Planning with Temporal Uncertainty
37