DIGITAL PATHOLOGY ASSOCIATION. (2020). Whole
Slide Imaging Repository. https://digitalpatholo
gyassociation.org/whole-slide-i maging-repository
Duma, N., Santana-Davila, R., & Molina, J. R. (2019).
Non–Small Cell Lung Cancer: Epidemiology,
Screening, Diagnosis, and Treatment. Mayo Clinic
Proceedings, 94(8), 1623–1640. https://doi.org/
10.1016/j.may ocp.2019.01.013
El-Baz, A., Beache, G. M., Gimel’Farb, G., Suzuki, K.,
Okada, K., Elnakib, A., Soliman, A., & Abdollahi, B.
(2013). Computer-aided diagnosis systems for lung
cancer: Challenges and methodologies. In International
Journal of Biomedical Imaging (Vol. 2013). https://doi.
org/10.1155/2013/942353
Friedman, N., Geiger, D., & Goldszmidt, M. (1997).
Bayesian Network Classifiers. Machine Learning,
29(2–3), 131–163. https://doi.org/10.1023/a:100746
5528199
GDC. (n.d.). Retrieved July 10, 2021, from
https://portal.gdc.cancer.gov/
Goebel, C., Louden, C. L., McKenna, R., Onugha, O.,
Wachtel, A., & Long, T. (2019). Diagnosis of Non-
small Cell Lung Cancer for Early Stage Asymptomatic
Patients. Cancer Genomics and Proteomics, 16(4),
229–244. https://doi.org/10. 21873/cgp.20128
Greenfield, D. (2019). Artificial Intelligence in Medicine:
Applications, implications, and limitations - Science in
the News. https://sitn.hms.harvard.edu/flash/2019/
artificial-intelligence-in-medicine-applications-implica
tions-and-limitations/?web=1&wdLOR=c5DCD23 86-
04EB-463E-86FD-48BACB362747
Hanna, M. G., Parwani, A., & Sirintrapun, S. J. (2020).
Whole Slide Imaging: Technology and Applications. In
Advances in Anatomic Pathology (Vol. 27, Issue 4, pp.
251–259). Lippincott Williams and Wilkins. https://
doi.org/10.1097/PAP.0000000000000273
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2016-Decem, 770–778. https://
doi.org/10.1109/CVPR.2016.90
Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J.
M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., &
Ramkumar, P. N. (2020). Machine Learning and
Artificial Intelligence: Definitions, Applications, and
Future Directions. In Current Reviews in
Musculoskeletal Medicine (Vol. 13, Issue 1, pp. 69–76).
Springer. https://doi.org/10.1007/s12178-020-09600-8
Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., & Keutzer, K. (2016). SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and
<0.5MB model size. http://arxiv.org/abs/1602.07360
Keith, R. L. (2020). Lung Carcinoma.
https://www.merckmanuals.com/professional/pulmona
ry-disorders/tumors-of-the-lungs/lung-carcinoma
Kleczek, P., Jaworek-Korjakowska, J., & Gorgon, M.
(2020). A novel method for tissue segmentation in high-
resolution H&E-stained histopathological whole-slide
images. Computerized Medical Imaging and Graphics
,
79, 101686. https://doi.org/10.1016/j.compmedimag
.2019.101686
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017).
ImageNet classification with deep convolutional neural
networks. Communications of the ACM, 60(6), 84–90.
https://doi.org/10.1145/3065386
Li, Z., Hu, Z., Xu, J., Tan, T., Chen, H., Duan, Z., Liu, P.,
Tang, J., Cai, G., Ouyang, Q., Tang, Y., Litjens, G., &
Li, Q. (2018). Computer-aided diagnosis of lung
carcinoma using deep learning - a pilot study.
http://arxiv.org/abs/1803.05471
Liaw, A., & Wiener, M. (2002). Classification and
Regression by randomForest. R News, 2(3), 18–22.
http://www.stat.berkeley.edu/
Nasim, F., Sabath, B. F., & Eapen, G. A. (2019). Lung
Cancer. In Medical Clinics of North America (Vol. 103,
Issue 3, pp. 463–473). W.B. Saunders. https://
doi.org/10.1016/j.mcna.2018.12.006
Pavlisko, E. N., & Roggli, V. L. (2020). Lung cancer:
Clinical findings, pathology, and exposure assessment.
In Occupational Cancers (pp. 205–226). Springer
International Publishing. https://doi.org/10.1007/978-
3-030-30766-0_10
Pulmão, F. P. do. (2017). Que tipo de tumor é?
https://www.fundacaoportuguesadopulmao.org/apoio-
ao-doente/cancro-do-pulmao/que-tipo-de-tumor-e/?sba
ck#462
Russell, S., & Norvig, P. (2021). Artificial intelligence: a
modern approach (4 (Ed.)).
Society, A. C. (2021). Key Statistics for Lung Cancer.
https://www.cancer.org/cancer/lung-cancer/about/key-
statistics.html
Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., &
Zeileis, A. (2008). Conditional variable importance for
random forests. BMC Bioinformatics, 9(1), 1–11.
https://doi.org/10.1186/1471-2105-9-307
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich,
A. (2015). Going deeper with convolutions. Proceedings
of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 07-12-June, 1–9.
https://doi.org/10.1109/CVPR.2015.7298594
The Global Cancer Observatory. (2020). Portugal Source:
Globocan Incidence, Mortality and Prevalence by
cancer site.
Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H.,
& Israel, B. (2016). Deep Learning for Identifying
Metastatic Breast Cancer. https://arxiv.org/abs/1606.
05718v1
Wang, S., Chen, A., Yang, L., Cai, L., Xie, Y., Fujimoto, J.,
Gazdar, A., & Xiao, G. (2018). Comprehensive analysis
of lung cancer pathology images to discover tumor
shape and boundary features that predict survival
outcome. Scientific Reports, 8(1), 1–9. https://
doi.org/10.1038/s41598-018-27707-4
Wang, S., Wang, T., Yang, L., Yang, D. M., Fujimoto, J.,
Yi, F., Luo, X., Yang, Y., Yao, B., Lin, S. Y., Moran,
C., Kalhor, N., Weissferdt, A., Minna, J., Xie, Y.,
Wistuba, I. I., Mao, Y., & Xiao, G. (2019). ConvPath:
A software tool for lung adenocarcinoma digital