Frouco, G., Freitas, F. B., Coelho, J., Leitão, A., Martins,
C., & Ferreira, F. (2017b). DNA-Binding Properties of
African Swine Fever Virus pA104R, a Histone-Like
Protein Involved in Viral Replication and
Transcription. Journal of Virology, 91(12), 1–14.
https://doi.org/10.1128/jvi.02498-16
Galindo, I., & Alonso, C. (2017). African swine fever virus:
A review. Viruses, 9(5). https://doi.org/10.3390/v905
0103
Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J.
(1999). A knowledge-based approach in designing
combinatorial or medicinal chemistry libraries for drug
discovery. 1. A qualitative and quantitative
characterization of known drug databases. Journal of
Combinatorial Chemistry, 1(1), 55–68.
https://doi.org/10.1021/cc9800071
Guedes, I. A., Barreto, A. M. S., Marinho, D., Krempser,
E., Kuenemann, M. A., Sperandio, O., Dardenne, L. E.,
& Miteva, M. A. (2021). New machine learning and
physics-based scoring functions for drug discovery.
Scientific Reports, 11(1), 1–19.
https://doi.org/10.1038/s41598-021-82410-1
Guedes, I. A., Costa, L. S. C., dos Santos, K. B., Karl, A. L.
M., Rocha, G. K., Teixeira, I. M., Galheigo, M. M.,
Medeiros, V., Krempser, E., Custódio, F. L., Barbosa,
H. J. C., Nicolás, M. F., & Dardenne, L. E. (2021). Drug
design and repurposing with DockThor-VS web server
focusing on SARS-CoV-2 therapeutic targets and their
non-synonym variants. Scientific Reports, 11(1), 1–20.
https://doi.org/10.1038/s41598-021-84700-0
Hamza, A., Wei, N. N., & Zhan, C. G. (2012). Ligand-based
virtual screening approach using a new scoring
function. Journal of Chemical Information and
Modeling, 52(4), 963–974. https://doi.org/10.1021/ci
200617d
Hassan, M., Shahzadi, S., Seo, S. Y., Alashwal, H., Zaki,
N., & Moustafa, A. A. (2018). Molecular docking and
dynamic simulation of AZD3293 and solanezumab
effects against BACE1 to treat alzheimer’s disease.
Frontiers in Computational Neuroscience, 12(June), 1–
11. https://doi.org/10.3389/fncom.2018.00034
Hu, Q., Feng, M., Lai, L., & Pei, J. (2018). Prediction of
Drug-Likeness Using Deep Autoencoder Neural
Networks. Frontiers in Genetics, 9(November), 1–8.
https://doi.org/10.3389/fgene.2018.00585
Kiriiri, G. K., Njogu, P. M., & Mwangi, A. N. (2020).
Exploring different approaches to improve the success
of drug discovery and development projects: a review.
Future Journal of Pharmaceutical Sciences, 6(1), 27.
https://doi.org/10.1186/s43094-020-00047-9
Li, H., Leung, K. S., Wong, M. H., & Ballester, P. J. (2016).
USR-VS: a web server for large-scale prospective
virtual screening using ultrafast shape recognition
techniques. Nucleic Acids Research, 44(W1), W436–
W441. https://doi.org/10.1093/nar/gkw320
Lipinski, C. A. (2000). Drug-like properties and the causes
of poor solubility and poor permeability. Journal of
Pharmacological and Toxicological Methods,
44(1),
235–249. https://doi.org/10.1016/S1056-8719(00)0010
7-6
Lipinski, C. A. (2004). Lead- and drug-like compounds:
The rule-of-five revolution. Drug Discovery Today:
Technologies, 1(4), 337–341.
https://doi.org/10.1016/j.ddtec.2004.11.007
Liu, R., Sun, Y., Chai, Y., Li, S., Li, S., Wang, L., Su, J.,
Yu, S., Yan, J., Gao, F., Zhang, G., Qiu, H.-J., Gao, G.
F., Qi, J., & Wang, H. (2020). The structural basis of
African swine fever virus pA104R binding to DNA and
its inhibition by stilbene derivatives. Proceedings of the
National Academy of Sciences of the United States of
America, 117(20), 11000–11009.
https://doi.org/10.1073/pnas.1922523117
Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A.
M., & Taranto, A. G. (2020). Structure-Based Virtual
Screening: From Classical to Artificial Intelligence.
Frontiers in Chemistry, 8(April).
https://doi.org/10.3389/fchem.2020.00343
Matsumoto, T., Kaifuchi, N., Mizuhara, Y., Warabi, E., &
Watanabe, J. (2018). Use of a Caco-2 permeability
assay to evaluate the effects of several Kampo
medicines on the drug transporter P-glycoprotein.
Journal of Natural Medicines, 72(4), 897–904.
https://doi.org/10.1007/s11418-018-1222-x
Mohs, R. C., & Greig, N. H. (2017). Drug discovery and
development: Role of basic biological research.
Alzheimer’s & Dementia (New York, N. Y.), 3(4), 651–
657. https://doi.org/10.1016/j.trci.2017.10.005
Mortelmans, K., Mortelmans, K., & Zeiger, E. (2016). The
Ames Salmonella / microsome mutagenicity assay The
Ames Salmonella / microsome mutagenicity assay.
5107(December 2000), 29–60.
Mouchlis, V. D., Afantitis, A., Serra, A., Fratello, M.,
Papadiamantis, A. G., Aidinis, V., Lynch, I., Greco, D.,
& Melagraki, G. (2021). Advances in de novo drug
design: From conventional to machine learning
methods. International Journal of Molecular Sciences,
22(4), 1–22. https://doi.org/10.3390/ijms22041676
Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple
selection criteria for drug-like chemical matter. Journal
of Medicinal Chemistry, 44(12), 1841–1846.
https://doi.org/10.1021/jm015507e
Niel, N., Rechencq, E., Vidal, J. P., Escale, R., Durand, T.,
Girard, J. P., Rossi, J. C., Muller, A., & Bonne, C.
(1992). Synthesis and contractile activity of new
pseudopeptido and thioaromatic analogues of
leukotriene D4. Prostaglandins, 43(1), 45–54.
https://doi.org/10.1016/0090-6980(92)90063-Y
Osborne, D. W., & Musakhanian, J. (2018). Skin
Penetration and Permeation Properties of
Transcutol®—Neat or Diluted Mixtures. AAPS
PharmSciTech, 19(8), 3512–3533.
https://doi.org/10.1208/s12249-018-1196-8
Pen, G., Yang, N., Teng, D., Mao, R., Hao, Y., & Wang, J.
(2020). A review on the use of antimicrobial peptides
to combat porcine viruses.
Antibiotics, 9(11), 1–18.
https://doi.org/10.3390/antibiotics9110801
Petit, J., Meurice, N., Kaiser, C., & Maggiora, G. (2012).
Softening the Rule of Five - Where to draw the line?
Bioorganic and Medicinal Chemistry, 20(18), 5343–
5351. https://doi.org/10.1016/j.bmc.2011.11.064