REFERENCES
Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Ox-
toby, D., and Mouzakitis, A. (2019). A survey on
3d object detection methods for autonomous driving
applications. IEEE Transactions on Intelligent Trans-
portation Systems, 20(10):3782–3795.
Biederman, I. (1987). Recognition-by-components: A the-
ory of human image understanding. Psychological Re-
view, 94(2):115–147.
Chen, C., Li, G., Xu, R., Chen, T., Wang, M., and Lin, L.
(2019). ClusterNet: Deep Hierarchical Cluster Net-
work With Rigorously Rotation-Invariant Represen-
tation for Point Cloud Analysis. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4989–4997, Long Beach, CA,
USA. IEEE.
Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R. R.,
and Hu, S.-M. (2021). PCT: Point cloud transformer.
Computational Visual Media, 7(2):187–199.
Joseph-Rivlin, M., Zvirin, A., and Kimmel, R. (2019).
Momen
e
t: Flavor the Moments in Learning to Clas-
sify Shapes. In 2019 IEEE/CVF International Confer-
ence on Computer Vision Workshop (ICCVW), pages
4085–4094, Seoul, Korea (South). IEEE.
Kharroubi, A., Hajji, R., Billen, R., and Poux, F. (2019).
Classification and integration of massive 3d points
clouds in a virtual reality (vr) environment. Interna-
tional Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, 42(W17):165–
171.
Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90.
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen,
B. (2018). Pointcnn: Convolution on x-transformed
points. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems,
NIPS’18, page 828–838, Red Hook, NY, USA. Cur-
ran Associates Inc.
Mart
´
ınez, J. L., Morales, J., Reina, A. J., Mandow, A.,
Pequeno-Boter, A., and Garc
´
ıa-Cerezo, A. (2015).
Construction and calibration of a low-cost 3d laser
scanner with 360 field of view for mobile robots.
In 2015 IEEE International Conference on Industrial
Technology (ICIT), pages 149–154. IEEE.
Maturana, D. and Scherer, S. (2015). Voxnet: A 3d convolu-
tional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 922–928.
Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas,
L. J., and Su, H. (2019). PartNet: A large-scale bench-
mark for fine-grained and hierarchical part-level 3D
object understanding. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. (2019). Weisfeiler
and Leman Go Neural: Higher-Order Graph Neural
Networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):4602–4609.
Pfeiffer, J., Pfeiffer, T., Meißner, M., and Weiß, E.
(2020). Eye-tracking-based classification of informa-
tion search behavior using machine learning: evidence
from experiments in physical shops and virtual real-
ity shopping environments. Information Systems Re-
search, 31(3):675–691.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 652–660.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. arXiv preprint arXiv:1706.02413.
Shen, Y., Feng, C., Yang, Y., and Tian, D. (2018). Mining
Point Cloud Local Structures by Kernel Correlation
and Graph Pooling. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4548–4557, Salt Lake City, UT. IEEE.
Straub, J. and Kerlin, S. (2014). Development of a large,
low-cost, instant 3d scanner. Technologies, 2(2):76–
95.
Veli
ˇ
ckovi
´
c, P., Cucurull, G., Casanova, A., Romero, A.,
Li
`
o, P., and Bengio, Y. (2018). Graph Attention Net-
works. International Conference on Learning Repre-
sentations.
Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. (2019). Dynamic Graph CNN
for Learning on Point Clouds. ACM Transactions on
Graphics, 38(5):1–12.
Weibel, J.-B., Patten, T., and Vincze, M. (2019). Addressing
the sim2real gap in robotic 3-d object classification.
IEEE Robotics and Automation Letters, 5(2):407–413.
Xia, F. (2017). Pointnet.pytorch .
https://github.com/fxia22/pointnet.pytorch.
You, Y. (2021). Point-transformers .
https://github.com/qq456cvb/Point-Transformers.
Zhao, H., Jiang, L., Jia, J., Torr, P., and Koltun, V. (2020).
Point Transformer. arXiv:2012.09164 [cs]. arXiv:
2012.09164.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
298