Bergman,  L.,  Cohen,  N.,  and  Hoshen,  Y.  (2020).  Deep 
Nearest  Neighbor  Anomaly  Detection.  ArXiv, 
abs/2002.10445. 
Bergmann,  P.,  Fauser,  M.,  Sattlegger,  D.,  and  Steger,  C. 
(2019a). MVTec AD - A  Comprehensive  Real-World 
Dataset  for  Unsupervised  Anomaly  Detection.  IEEE 
Conference  on  Computer  Vision  and  Pattern 
Recognition (CVPR), pages 9592-9600. 
Bergmann,  P.,  Fauser,  M.,  Sattlegger,  D.,  and  Steger,  C. 
(2020). Uninformed students: Student-teacher anomaly 
detection  with  discriminative  latent  embeddings.  In 
CVPR. 
Bergmann,  P.,  Lowe,  S.,  Fauser,  M.,  Sattlegger,  D.,  and 
Steger,  C.  (2019b).  Improving  Unsupervised  Defect 
Segmentation  by  Applying  Structural  Similarity  to 
Autoencoders. In Proceedings of the 14
th
 International 
Joint Conference on Computer Vision, Imaging and 
Computer Graphics Theory and Applications, volume 
5, pages 372–380 
Breunig, M., Kriegel, H., Ng, R.T., Sander, J. (2000). LOF: 
identifying  density-based  local  outliers.  International 
Conference on Management of Data (SIGMOD), pages 
93-104  
Burlina, P., Joshi, N., and Wang, I. (2019). Where’s Wally 
Now?  Deep  Generative  and  Discriminative 
Embeddings for  Novelty Detection. IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), 
pages 11507-11516 
Chang,  S.,  Du,  B.,  and  Zhang,  L.,  (2019).  A  Sparse 
Autoencoder Based Hyperspectral Anomaly Detection 
Algorithm  Using  Residual  of  Reconstruction  Error. 
IEEE International Geoscience and Remote Sensing 
Symposium, pages 5488-5491 
Chao-Qing,  H.,  et  al.  (2019).  Inverse-Transform 
AutoEncoder  for  Anomaly  Detection.”  ArXiv 
abs/1911.10676.  
Chollet,  F.  (2017).  Xception:  Deep  Learning  with 
Depthwise Separable Convolutions. IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), 
pages 1800-1807 
Davis,  J.,  and  Goadrich,  M.  (2006).  The  relationship 
between  precision  recall  and  ROC  curves.  In 
International Conference on Machine Learning 
(ICML), pages 233–240  
Deng, J. et al. (2009). Imagenet: A large-scale hierarchical 
image database. IEEE Conference on Computer Vision 
and Pattern Recognition CVPR. pages 248–255. 
Eskin, E. (2000). Anomaly detection over noisy data using 
learned probability distributions. In Proceedings of the 
17th International Conference on Machine Learning, 
pages 255-262. 
Golan, I., and El-Yaniv, R. (2018). Deep anomaly detection 
using geometric transformations. In NeurIPS. 
Guo, J., Liu, G., Zuo, Y. and Wu, J. (2018). An Anomaly 
Detection  Framework  Based  on  Autoencoder  and 
Nearest  Neighbor.  15th International Conference on 
Service Systems and Service Management (ICSSSM), 
pages 1-6 
Harrou,  F.,  Kadri,  F.,  Chaabane,  S.,  Tahon,  C.,  Sun,  Y. 
(2015).  Improved  principal  component  analysis  for 
anomaly  detection:  Application  to  an  emergency 
department.  Computers & Industrial Engineering  88: 
63–77  
Jinwon,  An.,  and  Sungzoon,  Cho.  (2015).  Variational 
Autoencoder  based  Anomaly  Detection  using 
Reconstruction Probability. SNU Data Mining Center, 
Tech. Rep. Special Lecture on IE 2:1–18 
Kawachi,  Y.,  Koizumi,  Y.,  and  Harada,  N.  (2018). 
Complementary  set  variational  autoencoder  for 
supervised  anomaly  detection.  IEEE International 
Conference on Acoustics, Speech and Signal 
Processing (ICASSP), pages 2366–2370. 
Kingma,  D.  P.,  Welling,  M.  (2014).  Auto-Encoding 
Variational  Bayes.  International Conference on 
Learning Representations (ICLR), pages 1-14 
Kornblith, S., Shlens, J.,  and  Le, Q. V. (2019). Do  better 
imagenet models transfer better? IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 
pages 2661-2671. 
Krizhevsky, A., and Hinton, G. (2009). Learning multiple 
layers of features from tiny images. Technical Report. 
University of Toronto. 
LeCun,  Y.  (1998).  The  mnist  database  of  handwritten 
digits. http://yann. lecun. com/exdb/mnist/ 
Matsubara,  T.,  Hama,  K.,  Tachibana,  R.,  and  Uehara,  K. 
(2018).  Deep  generative  model  using  unregularized 
score  for  anomaly  detection  with  heterogeneous 
complexity. arXiv preprint arXiv:1807.05800. 
Nalisnick,  E.,  Matsukawa,  A.,  Whye  The,  Y.,  Gorur,  D., 
and Lakshminarayanan, B. (2018). Do Deep Generative 
Models Know What They Don’t Know? arXiv preprint 
arXiv:1810.09136. 
Napoletano,  P.,  Piccoli,  F.,  and  Schettini,  R.  (2018). 
Anomaly Detection in Nanofibrous Materials by CNN-
Based Self-Similarity. Sensors, 18 (1): 209  
Nazaré, S. et al. (2018). Are pre-trained CNNs good feature 
extractors  for  anomaly  detection  in  surveillance 
videos?” ArXiv abs/1811.08495.  
Olive, D.J. (2017). Principal Component Analysis, Robust 
Multivariate Analysis, Springer: 189–217. 
Oza, P. and Patel, V. M. (2019). One-Class Convolutional 
Neural  Network.  IEEE  Signal  Processing  Letters,  26 
(2): 277-281.  
Perera,  P.,  and  Patel,  V.  M.,  (2019).  Learning  Deep 
Features  for  One-Class  Classification.  IEEE 
Transactions on Image Processing, 28 (11): 5450-5463.  
Pol, A., Berger, V., Germain, C., Cerminara, G., and 
Pierini,  M.,  (2019).  Anomaly  Detection  with 
Conditional  Variational  Autoencoders.  IEEE 
International Conference On Machine Learning and 
Applications (ICMLA), pages 1651-1657 
Ribeiro, M., Lazzaretti, A. E., and Lopes, H. S. (2018). A 
study of deep convolutional auto-encoders for anomaly 
detection in  videos. Pattern Recognition Letters, 105: 
13-22, 
Ruff,  L.,  Görnitz,  N.,  Deecke,  L.,  Siddiqui,  S., 
Vandermeulen, R.A., Binder, A., Müller, E., and Kloft, 
M.  (2018).  Deep  One-Class  Classification.  In 
Proceedings of the 35th International Conference on 
Machine Learning, volume 80, pages 4393-4402