Bergman, L., Cohen, N., and Hoshen, Y. (2020). Deep
Nearest Neighbor Anomaly Detection. ArXiv,
abs/2002.10445.
Bergmann, P., Fauser, M., Sattlegger, D., and Steger, C.
(2019a). MVTec AD - A Comprehensive Real-World
Dataset for Unsupervised Anomaly Detection. IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9592-9600.
Bergmann, P., Fauser, M., Sattlegger, D., and Steger, C.
(2020). Uninformed students: Student-teacher anomaly
detection with discriminative latent embeddings. In
CVPR.
Bergmann, P., Lowe, S., Fauser, M., Sattlegger, D., and
Steger, C. (2019b). Improving Unsupervised Defect
Segmentation by Applying Structural Similarity to
Autoencoders. In Proceedings of the 14
th
International
Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, volume
5, pages 372–380
Breunig, M., Kriegel, H., Ng, R.T., Sander, J. (2000). LOF:
identifying density-based local outliers. International
Conference on Management of Data (SIGMOD), pages
93-104
Burlina, P., Joshi, N., and Wang, I. (2019). Where’s Wally
Now? Deep Generative and Discriminative
Embeddings for Novelty Detection. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 11507-11516
Chang, S., Du, B., and Zhang, L., (2019). A Sparse
Autoencoder Based Hyperspectral Anomaly Detection
Algorithm Using Residual of Reconstruction Error.
IEEE International Geoscience and Remote Sensing
Symposium, pages 5488-5491
Chao-Qing, H., et al. (2019). Inverse-Transform
AutoEncoder for Anomaly Detection.” ArXiv
abs/1911.10676.
Chollet, F. (2017). Xception: Deep Learning with
Depthwise Separable Convolutions. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 1800-1807
Davis, J., and Goadrich, M. (2006). The relationship
between precision recall and ROC curves. In
International Conference on Machine Learning
(ICML), pages 233–240
Deng, J. et al. (2009). Imagenet: A large-scale hierarchical
image database. IEEE Conference on Computer Vision
and Pattern Recognition CVPR. pages 248–255.
Eskin, E. (2000). Anomaly detection over noisy data using
learned probability distributions. In Proceedings of the
17th International Conference on Machine Learning,
pages 255-262.
Golan, I., and El-Yaniv, R. (2018). Deep anomaly detection
using geometric transformations. In NeurIPS.
Guo, J., Liu, G., Zuo, Y. and Wu, J. (2018). An Anomaly
Detection Framework Based on Autoencoder and
Nearest Neighbor. 15th International Conference on
Service Systems and Service Management (ICSSSM),
pages 1-6
Harrou, F., Kadri, F., Chaabane, S., Tahon, C., Sun, Y.
(2015). Improved principal component analysis for
anomaly detection: Application to an emergency
department. Computers & Industrial Engineering 88:
63–77
Jinwon, An., and Sungzoon, Cho. (2015). Variational
Autoencoder based Anomaly Detection using
Reconstruction Probability. SNU Data Mining Center,
Tech. Rep. Special Lecture on IE 2:1–18
Kawachi, Y., Koizumi, Y., and Harada, N. (2018).
Complementary set variational autoencoder for
supervised anomaly detection. IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2366–2370.
Kingma, D. P., Welling, M. (2014). Auto-Encoding
Variational Bayes. International Conference on
Learning Representations (ICLR), pages 1-14
Kornblith, S., Shlens, J., and Le, Q. V. (2019). Do better
imagenet models transfer better? IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 2661-2671.
Krizhevsky, A., and Hinton, G. (2009). Learning multiple
layers of features from tiny images. Technical Report.
University of Toronto.
LeCun, Y. (1998). The mnist database of handwritten
digits. http://yann. lecun. com/exdb/mnist/
Matsubara, T., Hama, K., Tachibana, R., and Uehara, K.
(2018). Deep generative model using unregularized
score for anomaly detection with heterogeneous
complexity. arXiv preprint arXiv:1807.05800.
Nalisnick, E., Matsukawa, A., Whye The, Y., Gorur, D.,
and Lakshminarayanan, B. (2018). Do Deep Generative
Models Know What They Don’t Know? arXiv preprint
arXiv:1810.09136.
Napoletano, P., Piccoli, F., and Schettini, R. (2018).
Anomaly Detection in Nanofibrous Materials by CNN-
Based Self-Similarity. Sensors, 18 (1): 209
Nazaré, S. et al. (2018). Are pre-trained CNNs good feature
extractors for anomaly detection in surveillance
videos?” ArXiv abs/1811.08495.
Olive, D.J. (2017). Principal Component Analysis, Robust
Multivariate Analysis, Springer: 189–217.
Oza, P. and Patel, V. M. (2019). One-Class Convolutional
Neural Network. IEEE Signal Processing Letters, 26
(2): 277-281.
Perera, P., and Patel, V. M., (2019). Learning Deep
Features for One-Class Classification. IEEE
Transactions on Image Processing, 28 (11): 5450-5463.
Pol, A., Berger, V., Germain, C., Cerminara, G., and
Pierini, M., (2019). Anomaly Detection with
Conditional Variational Autoencoders. IEEE
International Conference On Machine Learning and
Applications (ICMLA), pages 1651-1657
Ribeiro, M., Lazzaretti, A. E., and Lopes, H. S. (2018). A
study of deep convolutional auto-encoders for anomaly
detection in videos. Pattern Recognition Letters, 105:
13-22,
Ruff, L., Görnitz, N., Deecke, L., Siddiqui, S.,
Vandermeulen, R.A., Binder, A., Müller, E., and Kloft,
M. (2018). Deep One-Class Classification. In
Proceedings of the 35th International Conference on
Machine Learning, volume 80, pages 4393-4402