the photopeak sinograms. Images generated by the
photopeak network also contained more severe
artifacts.
These results suggest that including scattered
coincidences in the data has the potential to increase
image quality. The authors hypothesize that by
utilizing coincidences outside the photopeak energy
bin, the patient dose may be lowered while
maintaining the same image quality, thus improving
patient care.
ACKNOWLEDGEMENTS
This work is supported by the Natural Sciences and
Engineering Research Council of Canada,
CancerCare Manitoba Foundation, and the University
of Manitoba.
REFERENCES
Bai, B., & Asma, E. (2016). PET Image Reconstruction:
Methodology and Quantitative Accuracy. In M. M.
Khalil (Ed.), Basic Science of PET Imaging (pp. 259–
284). Springer International Publishing.
https://doi.org/10.1007/978-3-319-40070-9_11
Berker, Y., Kiessling, F., & Schulz, V. (2014). Scattered
PET data for attenuation‐map reconstruction in
PET/MRI. Medical Physics (Lancaster), 41(10),
102502-n/a. https://doi.org/10.1118/1.4894818
Brusaferri, L., Bousse, A., Emond, E. C., Brown, R., Tsai,
Y.-J., Atkinson, D., Ourselin, S., Watson, C. C., Hutton,
B. F., Arridge, S., & Thielemans, K. (2020). Joint
Activity and Attenuation Reconstruction From Multiple
Energy Window Data With Photopeak Scatter Re-
Estimation in Non-TOF 3-D PET. IEEE Transactions
on Radiation and Plasma Medical Sciences, 4(4), 410–
421. https://doi.org/10.1109/TRPMS.2020.2978449
Cherry, S. R. (2012). Physics in nuclear medicine (4th ed.).
Elsevier/Saunders.
Conti, M., Hong, I., & Michel, C. (2012). Reconstruction of
scattered and unscattered PET coincidences using TOF
and energy information. Physics in Medicine &
Biology, 57(15), N307–N317. https://doi.org/10.1088/
0031-9155/57/15/N307
Defrise, M., Kinahan, P. E., Townsend, D. W., Michel, C.,
Sibomana, M., & Newport, D. F. (1997). Exact and
approximate rebinning algorithms for 3-D PET data.
IEEE Transactions on Medical Imaging, 16(2), 145–
158. https://doi.org/10.1109/42.563660
Dong, X., Lei, Y., Wang, T., Higgins, K., Liu, T., Curran,
W. J., Mao, H., Nye, J. A., & Yang, X. (2020). Deep
learning-based attenuation correction in the absence of
structural information for whole-body positron
emission tomography imaging. Physics in Medicine &
Biology, 65(5), 055011–055011. https://doi.org/
10.1088/1361-6560/ab652c
Dong, X., Wang, T., Lei, Y., Higgins, K., Liu, T., Curran,
W. J., Mao, H., Nye, J. A., & Yang, X. (2019).
Synthetic CT generation from non-attenuation
corrected PET images for whole-body PET imaging.
Physics in Medicine & Biology, 64(21), 215016–
215016. https://doi.org/10.1088/1361-6560/ab4eb7
Häggström, I., Schmidtlein, C. R., Campanella, G., &
Fuchs, T. J. (2019). DeepPET: A deep encoder–decoder
network for directly solving the PET image
reconstruction inverse problem. Medical Image
Analysis, 54, 253–262. https://doi.org/10.1016/
j.media.2019.03.013
Jan, S., Santin, G., Strul, D., Staelens, S., Assié, K., Autret,
D., Avner, S., Barbier, R., Bardiès, M., Bloomfield, P.
M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I.,
Chatziioannou, A. F., Choi, Y., Chung, Y. H., Comtat,
C., Donnarieix, D., Morel, C. (2004). GATE: A
simulation toolkit for PET and SPECT. Physics in
Medicine & Biology, 49(19), 4543–4561.
https://doi.org/10.1088/0031-9155/49/19/007
Lee, J. S. (2021). A Review of Deep-Learning-Based
Approaches for Attenuation Correction in Positron
Emission Tomography. IEEE Transactions on
Radiation and Plasma Medical Sciences, 5(2), 160–
184. https://doi.org/10.1109/TRPMS.2020.3009269
Liu, Z., Chen, H., & Liu, H. (2019). Deep Learning Based
Framework for Direct Reconstruction of PET Images.
In D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert,
S. Zhou, P.-T. Yap, & A. Khan (Eds.), Medical Image
Computing and Computer Assisted Intervention –
MICCAI 2019 (pp. 48–56). Springer International
Publishing. https://doi.org/10.1007/978-3-030-32248-
9_6
Meikle, S. R., Sossi, V., Roncali, E., Cherry, S. R., Banati,
R., Mankoff, D., Jones, T., James, M., Sutcliffe, J.,
Ouyang, J., Petibon, Y., Ma, C., Fakhri, G. E., Surti, S.,
Karp, J. S., Badawi, R. D., Yamaya, T., Akamatsu, G.,
Schramm, G., … Dutta, J. (2021). Quantitative PET in
the 2020s: A roadmap. Physics in Medicine & Biology,
66(6), 06RM01. https://doi.org/10.1088/1361-6560/
abd4f7
Segars, W. P., Sturgeon, G., Mendonca, S., Grimes, J., &
Tsui, B. M. W. (2010). 4D XCAT phantom for
multimodality imaging research. Medical Physics
(Lancaster), 37(9), 4902–4915. https://doi.org/
10.1118/1.3480985
Shiri, I., Ghafarian, P., Geramifar, P., Leung, K. H.-Y.,
Ghelichoghli, M., Oveisi, M., Rahmim, A., & Ay,
M. R. (2019). Direct attenuation correction of brain
PET images using only emission data via a
deep convolutional encoder-decoder (Deep-DAC).
European Radiology, 29(12), 6867–6879.
https://doi.org/10.1007/s00330-019-06229-1
Song, T.-A., Chowdhury, S. R., Yang, F., & Dutta, J.
(2020). PET image super-resolution using generative
adversarial networks. Neural Networks, 125, 83–91.
https://doi.org/10.1016/j.neunet.2020.01.029