Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018).
Progressive growing of gans for improved quality,
stability, and variation. ArXiv, abs/1710.10196.
Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J.,
and Aila, T. (2020a). Training generative adversarial
networks with limited data. ArXiv, abs/2006.06676.
Karras, T., Laine, S., and Aila, T. (2019). A style-based
generator architecture for generative adversarial
networks. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4396–
4405.
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen,
J., and Aila, T. (2020b). Analyzing and improving
the image quality of stylegan. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 8107–8116.
Kramberger, T. and Potocnik, B. (2020). Lsun-stanford car
dataset: Enhancing large-scale car image datasets using
deep learning for usage in gan training. Applied
Sciences, 10:4913.
Kurach, K., Lucic, M., Zhai, X., Michalski, M., and Gelly,
S. (2019). A large-scale study on regularization and
normalization in gans. In ICML.
Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A.
P.,´ Tejani, A., Totz, J., Wang, Z., and Shi, W. (2017).
Photo-realistic single image super-resolution using a
generative adversarial network. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 105–114.
Lee, M. and Seok, J. (2020). Regularization methods for
generative adversarial networks: An overview of recent
studies. ArXiv, abs/2005.09165.
Li, C. and Wand, M. (2016). Precomputed real-time texture
synthesis with markovian generative adversarial
networks. ArXiv, abs/1604.04382.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep
learning face attributes in the wild. 2015 IEEE
International Conference on Computer Vision (ICCV),
pages 3730–3738.
Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G.,
Tang, S., and Black, M. J. (2020). Learning to dress 3d
people in generative clothing. 2020 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6468–6477.
Mescheder, L. M., Geiger, A., and Nowozin, S. (2018).
Which training methods for gans do actually converge?
In ICML.
Mirza, M. and Osindero, S. (2014). Conditional generative
adversarial nets. ArXiv, abs/1411.1784.
Oeldorf, C. and Spanakis, G. (2019). Loganv2: Conditional
style-based logo generation with generative adversarial
networks. 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA),
pages 462–468.
Pathak, D., Krahenb¨ uhl, P., Donahue, J., Darrell, T., and¨
Efros, A. A. (2016). Context encoders: Feature learning
by inpainting. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)
, pages 2536–
2544.
Radford, A., Metz, L., and Chintala, S. (2016).
Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR,
abs/1511.06434.
Schonfeld, E., Schiele, B., and Khoreva, A. (2020). A u-¨
net based discriminator for generative adversarial
networks. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8204–
8213.
Shorten, C. and Khoshgoftaar, T. (2019). A survey on
image data augmentation for deep learning. Journal of
Big Data, 6:1–48.
Sinha, A., Ayush, K., Song, J., Uzkent, B., Jin, H., and
Ermon, S. (2021). Negative data augmentation. ArXiv,
abs/2102.05113.
Taigman, Y., Polyak, A., and Wolf, L. (2017).
Unsupervised cross-domain image generation. ArXiv,
abs/1611.02200.
Tseng, H.-Y., Jiang, L., Liu, C., Yang, M.-H., and Yang,
W. (2021). Regularizing generative adversarial
networks under limited data. In CVPR.
Wei, X., Gong, B., Liu, Z., Lu, W., and Wang, L. (2018).
Improving the improved training of wasserstein gans:
A consistency term and its dual effect. ArXiv,
abs/1803.01541.
Zhang, H., Zhang, Z., Odena, A., and Lee, H. (2020).
Consistency regularization for generative adversarial
networks. ArXiv, abs/1910.12027.
Zhao, S., Liu, Z., Lin, J., Zhu, J.-Y., and Han, S. (2020a).
Differentiable augmentation for data-efficient gan
training. ArXiv, abs/2006.10738.
Zhao, Z., Zhang, Z., Chen, T., Singh, S., and Zhang, H.
(2020b). Image augmentations for gan training. ArXiv,
abs/2006.02595.