cial pancreas using subcutaneous glucose sensing and
insulin delivery and a model predictive control algo-
rithm: the virginia experience.
De Keyser, R., Copot, D., and Ionescu, C. (2015). Estima-
tion of patient sensitivity to drug effect during propo-
fol hypnosis. In 2015 IEEE International Conference
on Systems, Man, and Cybernetics, pages 2487–2491.
IEEE.
Deckert, T., Bojsen, J., Christiansen, J. S., Kølendorf, K.,
Svendsen, P. A., and Andersen, A. R. (1980). 24-hour
blood glucose profiles in insulin-dependent diabetics
treated with intravenous insulin infusion systems: A
comparison between closed-and open-loop systems.
Acta Medica Scandinavica, 208(1-6):451–458.
Doyle, F. J., Huyett, L. M., Lee, J. B., Zisser, H. C., and
Dassau, E. (2014). Closed-loop artificial pancreas
systems: engineering the algorithms. Diabetes care,
37(5):1191–1197.
Dumont, G. A. (2012). Closed-loop control of anesthesia-a
review. IFAC Proceedings Volumes, 45(18):373–378.
Felman, A. (2020). Blood: Components, functions, groups,
and disorders. https://www.medicalnewstoday.com/
articles/196001.
Findeisen, R. and Allg
¨
ower, F. (2002). An introduction to
nonlinear model predictive control. In 21st Benelux
meeting on systems and control, volume 11, pages
119–141. Technische Universiteit Eindhoven Veld-
hoven Eindhoven, The Netherlands.
Gene F. Franklin, J. David Powell, A. E.-N. (2015). Feed-
back Control of Dynamic Systems, chapter 4, pages
216–237. Pearson Education Limited, 7 edition.
Gonzalez-Cava, J. M., Carlson, F. B., Troeng, O., Cervin,
A., van Heusden, K., Dumont, G. A., and Soltesz,
K. (2021). Robust pid control of propofol anaesthe-
sia: uncertainty limits performance, not pid structure.
Computer Methods and Programs in Biomedicine,
198:105783.
Hull, C. (1979). Pharmacokinetics and pharmacodynamics.
British Journal of Anaesthesia, 51(7):579–594.
Kieser, R., Reynisson, P., and Mulligan, T. J. (2005). Def-
inition of signal-to-noise ratio and its critical role in
split-beam measurements. ICES Journal of Marine
Science, 62(1):123–130.
Kuhnle, G., Hornuss, C., Lenk, M., Salam, A., Wiepcke, D.,
Edelmann-Gahr, V., Flake, G., Daunderer, M., Ober-
hauser, M., M
¨
uller, H.-H., et al. (2013). Impact of
propofol on mid-latency auditory-evoked potentials in
children. British journal of anaesthesia, 110(6):1001–
1009.
Kumar, V., Nakra, B., and Mittal, A. (2011). A review on
classical and fuzzy pid controllers. International Jour-
nal of Intelligent Control and Systems, 16(3):170–181.
Mantzaridis, H. and Kenny, G. (1997). Auditory evoked
potential index: a quantitative measure of changes in
auditory evoked potentials during general anaesthesia.
Anaesthesia, 52(11):1030–1036.
Nas¸cu, I., Krieger, A., Ionescu, C. M., and Pistikopoulos,
E. N. (2014). Advanced model-based control stud-
ies for the induction and maintenance of intravenous
anaesthesia. IEEE Transactions on biomedical engi-
neering, 62(3):832–841.
Ntouskas, S. and Sarimveis, H. (2021). A robust model pre-
dictive control framework for the regulation of anes-
thesia process with propofol. Optimal Control Appli-
cations and Methods.
Ontario, H. Q. et al. (2004). Bispectral index monitor: an
evidence-based analysis. Ont Health Technol Assess
Ser, 4(9):1–70.
Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Vi-
sioli, A., and Vivacqua, G. (2017). Optimized pid
control of depth of hypnosis in anesthesia. Computer
methods and programs in biomedicine, 144:21–35.
Pichlmayr, I., Lips, U., and K
¨
unkel, H. (2012). The elec-
troencephalogram in anesthesia: fundamentals, prac-
tical applications, examples. Springer Science &
Business Media.
Pinsker, J. E., Lee, J. B., Dassau, E., Seborg, D. E., Bradley,
P. K., Gondhalekar, R., Bevier, W. C., Huyett, L.,
Zisser, H. C., and Doyle, F. J. (2016). Randomized
crossover comparison of personalized mpc and pid
control algorithms for the artificial pancreas. Diabetes
Care, 39(7):1135–1142.
Plourde, G. (2006). Auditory evoked potentials. Best Prac-
tice & Research Clinical Anaesthesiology, 20(1):129–
139.
Rakovi
´
c, S. V. and Levine, W. S. (2018). Handbook of
model predictive control. Springer.
Rampil, I. J. (1998). A primer for eeg signal processing in
anesthesia. Anesthesiology: The Journal of the Amer-
ican Society of Anesthesiologists, 89(4):980–1002.
Shokrekhodaei, M. and Quinones, S. (2020). Review
of non-invasive glucose sensing techniques: Optical,
electrical and breath acetone. Sensors, 20(5):1251.
Solomonow, M. (1984). External control of the neuromus-
cular system. IEEE transactions on Biomedical Engi-
neering, (12):752–763.
Struys, M. M., Mortier, E. P., and De Smet, T. (2006).
Closed loops in anaesthesia. Best Practice & Research
Clinical Anaesthesiology, 20(1):211–220.
The MathWorks, I. Matlab. https://www.mathworks.com/
products/matlab.html.
The MathWorks, I. Optimize performance.
https://www.mathworks.com/help/simulink/
performance performance.html.
Walsh, P., Kane, N., and Butler, S. (2005). The clinical
role of evoked potentials. Journal of neurology, neu-
rosurgery & psychiatry, 76(suppl 2):ii16–ii22.
Westenskow, D. R. (1987). Closed-loop control of blood
pressure, ventilation, and anesthesia delivery. Interna-
tional journal of clinical monitoring and computing,
4(2):69–74.
Xue, D., Chen, Y., and Atherton, D. P. (2007). Linear
feedback control: analysis and design with MATLAB.
SIAM.
Comparing Closed-loop Control of Drug Infusion using MPC and PID
133