Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.,
and Dally, W. (2016a). Eie: Efficient inference en-
gine on compressed deep neural network. ISCA’2016,
pages 243–254.
Han, S., Mao, H., and Dally, W. J. (2016b). Deep compres-
sion: Compressing deep neural network with prun-
ing, trained quantization and huffman coding. In
ICLR’2016.
Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). Learn-
ing both weights and connections for efficient neural
networks. In NIPS’2015, NIPS’15, pages 1135–1143,
Cambridge, MA, USA.
Hassibi, B., Stork, D. G., Wolff, G., and Watanabe, T.
(1993). Optimal brain surgeon: Extensions and
performance comparisons. In NIPS’1993, NIPS’93,
pages 263–270.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR’2016,
pages 770–778.
He, Y., Kang, G., Dong, X., Fu, Y., and Yang, Y. (2018).
Soft filter pruning for accelerating deep convolutional
neural networks. In IJCAI’2018, pages 2234–2240.
He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. (2019). Filter
pruning via geometric median for deep convolutional
neural networks acceleration. In CVPR’2019.
Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In ICLR’2015.
Krizhevsky, A., Nair, V., and Hinton, G. (2009). Learning
multiple layers of features from tiny images. Techni-
cal report, Faculty of Computer Science, University of
Toronto.
Le Cun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal
brain damage. In NIPS’1990, pages 598–605.
Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
(2016). Pruning filters for efficient convnets. CoRR,
abs/1608.08710.
Liu, J., Zhuang, B., Zhuang, Z., Guo, Y., Huang, J., Zhu,
J., and Tan, M. (2021). Discrimination-aware network
pruning for deep model compression. TPAMI’2021,
PP:(early access).
Luo, J.-H., Zhang, H., Zhou, H.-Y., Xie, C.-W., Wu, J., and
Lin, W. (2019). Thinet: Pruning cnn filters for a thin-
ner net. TPAMI’2019, 41(10):2525–2538.
Robert, C. P. and Casella, G. (2010). Monte Carlo Statisti-
cal Methods.
Sandor, C., Pavel, S., and Csato, L. (2020). Pruning CNN’s
with Linear Filter Ensembles. In ECAI’2020, volume
325 of Frontiers in Artificial Intelligence and Applica-
tions, pages 1435–1442.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A sim-
ple way to prevent neural networks from overfitting.
JMLR’2014, 15(56):1929–1958.
Yao, S., Zhao, Y., Zhang, A., Su, L., and Abdelzaher, T.
(2017). Deepiot: Compressing deep neural network
structures for sensing systems with a compressor-
critic framework. In SenSys’2017.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
322