REFERENCES
Bernardin, K., & Stiefelhagen , R. (2008). Evaluating
Multiple Object Tracking Performance: The CLEAR
MOT Metrics. EURASIP Journal on Image and Video
Processing, 2008, 1-10.
Chung, M. K., Lee L. Eckhardt, & Lin Y. Chen. (2020).
Lifestyle and Risk Factor Modification for Reduction of
Atrial Fibrillation: A Scientific Statement From the
American Heart Association. Circulation. doi:10.1161/
CIR.0000000000000748
Costa, Madalena, Goldberger, Ary L, Peng, & C.-K. (2002,
7). Multiscale Entropy Analysis of Complex Physiologic
Time Series. Phys. Rev. Lett., 89(6), 068102. Retrieved
from https://link.aps.org/doi/ 10.1103/PhysRevLett.89.0
68102
Dendorfer, P., Osep, A., & Leal-Taixé, L. (n.d.). CVPR 2019
Tracking Challenge Results. Retrieved from
https://motchallenge.net/
FG, C., Aliot E, & Botto GL. (2008). Delayed rhythm control
of atrial fibrillation may be a cause of failure to prevent
recurrences: reasons for change to active antiarrhythmic
treatment at the time of the first detected episode.
Europace. doi:10.1093/europace/eum276
Girshick, R. (2015). Fast R-CNN. ICCV 2015.
Goldberger, A., Amaral, L., Glass, L., & Hausdorff, J. (2017,
2 1). AF Classification from a Short Single Lead ECG
Recording - The PhysioNet Computing in Cardiology
Challenge 2017. (PhysioBank, PhysioToolkit, and
PhysioNet) Retrieved from https://physionet.org/
content/challenge-2017/1.0.0/
Griffin, D. W., & Jae S. Lim. (1984). Signal Estimation from
Modified Short-Time Fourier Transform. IEEE
Transactions on Acoustics, Speech, and Signal
Processing, 236-243.
Heindl, C. (2017). Benchmark multiple object trackers
(MOT) in Python. Retrieved from https://github.com/
cheind/py-motmetrics
Intel. (2018). Powerful and efficient Computer Vision
Annotation Tool (CVAT).
Kahn, L. H. (2017). Perspective: The one-health way.
Nature, 543, S47.
Kapun, A., Felix, A., & Eva, G. (2018). Activity analysis to
detect lameness in pigs with a UHF-RFID system. 10th
International Livestock Environment Symposium.
Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-Task
Learning Using Uncertainty to Weigh Losses for Scene
Geometry and Semantics. CVPR.
Kim, J., Chung, Y., Choi, Y., Sa, J., Kim, H., Chung, Y., . . .
Kim, H. (2017). Depth-Based Detection of Standing-Pigs
in Moving Noise Environments. Sensors, 17(12), 2757.
Kuhn, H. W. (1955). The hungarian method for the
assignment problem. In Naval Research Logistics
Quarterly (pp. 83-97).
Lee, G. R., Ralf Gommers, Filip Wasilewski, Kai Wohlfahrt,
& Aaron O’Leary. (2019). PyWavelets: A Python
package for wavelet analysis. Journal of Open Source
Software, 4(36), 1237. doi:https://doi.org/ 10.21105/
joss.01237
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., &
Belongie, S. (2017). Feature Pyramid Networks for
Object Detection. CVPR 2017.
Lip, G., L. Fauchier, & S.B. Freedman. (2016). Atrial
fibrillation. Nat Rev Dis Primers 2. doi:https:
//doi.org/10.1038/nrdp.2016.16
Mallick, T., Das, P. P., & Majumdar, A. K. (2014).
Characterizations of Noise in Kinect Depth Images: A
Review. IEEE Sensors Journal, 14
(6), 1731-1740.
Maselyne, J. (2016). Measuring the drinking behaviour of
individual pigs housed in group using radio frequency
identification (RFID). Animal, 1557-1556.
Matthews, S. G., Miller, A., James, C., Llias, K., & Thomas,
P. (2016). Early detection of health and welfare
compromises through automated detection of
behavioural changes in pigs. The Veterinary Journal,
217, 43-51.
Matthews, S., A.L., M., & Thomas, P. (2017). Automated
tracking to measure behavioural changes in pigs for
health and welfare monitoring. Scientific Reports, 7.
Munger, T. M., Li-Qun Wu, & Win K. Shen. (2014). Atrial
fibrillation. Journal of Biomedical Research.
doi:10.7555/jbr.28.20130191
Neubeck, A., & Gool, L. V. (2006). Efficient non-maximum
suppression. IEEE.
Page, R. L., W E Wilkinson, W K Clair, E A McCarthy, & E
L Pritchett. (1994). Asymptomatic arrhythmias in
patients with symptomatic paroxysmal atrial fibrillation
and paroxysmal supraventricular tachycardia.
Circulation.
doi:https://doi.org/10.1161/01.CIR.89.1.224
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental
improvement.
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-
CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In Advances in Neural Information
Processing Systems (pp. 91-99).
Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C.
(2016). Performance Measures and a Data Set for Multi-
Target, Multi-Camera Tracking. ECCV 2016.
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet:
A Unified Embedding for Face Recognition and
Clustering. CVPR.
Sejdić, E., Igor Djurović, & Jin Jiang. (2009). Time-
frequency feature representation using energy
concentration: An overview of recent advances. Digital
Signal Processing, 19 (1): 153–183.
doi:https://doi.org/10.1016/j.dsp.2007.12.004
Sohn, K. (2016). Improved Deep Metric Learning with
Multi-class N-pair Loss Objective. NIPS.
T.Inouye. (1991). Quantification of EEG irregularity by use
of the entropy of the power spectrum. Electroencepha-
lography and clinical neurophysiology, 79(3), 204-210.
Wang, Z., Zheng, L., Liu, Y., Li, Y., & Wang, S. (2020).
Towards Real-Time Multi-Object Tracking. 2020
European Conference on Computer Vision.
Welch, G., & Bishop, G. (1995). An introduction to the
kalman filter.
Zhang, Y., Wang, C., Xinggang, W., Wenjun, Z., & Wenyu,
L. (2020). FairMOT: On the Fairness of Detection and
Re-Identification in Multiple Object Tracking. 2020
Conference on Computer Vision and Pattern
Recognition.
Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as
Points. arXiv.