REFERENCES
Alizadehsani, R., Habibi, J., Hosseini, M. J., Mashayekhi,
H., Boghrati, R., Ghandeharioun, A., Bahadorian, B., &
Sani, Z. A. (2013). A data mining approach for
diagnosis of coronary artery disease. Computer
Methods and Programs in Biomedicine.
https://doi.org/10.1016/j.cmpb.2013.03.004
Bashir, S., Qamar, U., & Hassan, F. (2015). Bagmoov: A
novel ensemble for heart disease prediction bootstrap
aggregation with multi-objective optimized voting.
Australasian Physical and Engineering Sciences in
Medicine. https://doi.org/10.1007/s13246-015-0337-6
Bashir, S., Qamar, U., & Javed, M. Y. (2015). An ensemble
based decision support framework for intelligent heart
disease diagnosis. International Conference on
Information Society, i-Society 2014. https://doi.org/
10.1109/i-Society.2014.7009056
Benhar, H., Idri, A., & Fernández-Alemán, J. L. (2019). A
Systematic Mapping Study of Data Preparation in Heart
Disease Knowledge Discovery. Journal of Medical
Systems, 43(1), 17. https://doi.org/10.1007/s10916-
018-1134-z
Benhar, H., Idri, A., & L Fernández-Alemán, J. (2020).
Data preprocessing for heart disease classification: A
systematic literature review. In Computer Methods and
Programs in Biomedicine. https://doi.org/10.1016/
j.cmpb.2020.105635
Cüvitoǧlu, A., & Işik, Z. (2018). Classification of CAD
dataset by using principal component analysis and
machine learning approaches. 2018 5th International
Conference on Electrical and Electronics Engineering,
ICEEE 2018. https://doi.org/10.1109/ICEEE2.2018.83
91358
Gárate-Escamila, A. K., Hajjam El Hassani, A., & Andrès,
E. (2020). Classification models for heart disease
prediction using feature selection and PCA. Informatics
in Medicine Unlocked. https://doi.org/10.1016/
j.imu.2020.100330
Gardner, M. ., & Dorling, S. (1998). Artificial neural
networks (the multilayer perceptron)—a review of
applications in the atmospheric sciences. Atmospheric
Environment, 32(14–15), 2627–2636. https://doi.org/
10.1016/S1352-2310(97)00447-0
Gooch, J. W. (2011). Pearson Product-Moment Correlation
Coefficient. In Encyclopedia of Measurement and
Statistics. Sage Publications, Inc.
https://doi.org/10.4135/9781412952644.n338
H., K., H., J., & J., G. (2016). Diagnosing Coronary Heart
Disease using Ensemble Machine Learning.
International Journal of Advanced Computer Science
and Applications. https://doi.org/10.14569/
ijacsa.2016.071004
Hall, M. a., & Smith, L. a. (1998). Practical feature subset
selection for machine learning. Computer Science.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining:
Concepts and Techniques. In Data Mining: Concepts
and Techniques. https://doi.org/10.1016/C2009-0-
61819-5
Hosni, M., Carrillo de Gea, J. M., Idri, A., El Bajta, M.,
Fernández Alemán, J. L., García-Mateos, G., &
Abnane, I. (2020). A systematic mapping study for
ensemble classification methods in cardiovascular
disease. Artificial Intelligence Review. https://doi.org/
10.1007/s10462-020-09914-6
Hosni, M., Carrillo de Gea, J. M., Idri, A., El Bajta, M.,
Fernández Alemán, J. L., García-Mateos, G., &
Abnane, I. (2021). A systematic mapping study for
ensemble classification methods in cardiovascular
disease. Artificial Intelligence Review. https://doi.org/
10.1007/s10462-020-09914-6
Jadhav, S., Nalbalwar, S., & Ghatol, A. (2014). Feature
elimination based random subspace ensembles learning
for ECG arrhythmia diagnosis. Soft Computing.
https://doi.org/10.1007/s00500-013-1079-6
Jin, X., Xu, A., Bie, R., & Guo, P. (2006). Machine learning
techniques and chi-square feature selection for cancer
classification using SAGE gene expression profiles.
Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/
10.1007/11691730_11
Kadam, V. J., & Jadhav, S. M. (2020). Performance
analysis of hyperparameter optimization methods for
ensemble learning with small and medium sized
medical datasets. Journal of Discrete Mathematical
Sciences and Cryptography. https://doi.org/10.1080/
09720529.2020.1721871
Kadi, I., Idri, A., & Fernandez-Aleman, J. L. (2017).
Systematic mapping study of data mining–based
empirical studies in cardiology. Health Informatics
Journal, 1. https://doi.org/10.1177/1460458217717636
Lo, Y. T., Fujita, H., & Pai, T. W. (2016). Prediction of
coronary artery disease based on ensemble learning
approaches and co-expressed observations. Journal of
Mechanics in Medicine and Biology. https://doi.org/
10.1142/S0219519416400108
Ozcift, A., & Gulten, A. (2011). Classifier ensemble
construction with rotation forest to improve medical
diagnosis performance of machine learning algorithms.
Computer Methods and Programs in Biomedicine.
https://doi.org/10.1016/j.cmpb.2011.03.018
Pilnenskiy, N., & Smetannikov, I. (2020). Feature selection
algorithms as one of the python data analytical tools.
Future Internet. https://doi.org/10.3390/fi12030054
Qin, C.-J., Guan, Q., & Wang, X.-P. (2017). Application Of
Ensemble Algorithm Integrating Multiple Criteria
Feature Selection In Coronary Heart Disease Detection.
Biomedical Engineering: Applications, Basis and
Communications, 29(06). https://doi.org/10.4015/
S1016237217500430
Quinlan, J. R. (1986). Induction of Decision Trees.
Machine Learning. https://doi.org/10.1023/A:102264
3204877
Saikhu, A., Arifin, A. Z., & Fatichah, C. (2019). Correlation
and symmetrical uncertainty-based feature selection for
multivariate time series classification. International
Journal of Intelligent Engineering and Systems.
https://doi.org/10.22266/IJIES2019.0630.14