tional Workshop on Image Analysis for Multimedia In-
teractive Services WIAMIS 10, pages 1–4.
Alam, L. and Hoque, M. M. (2017). A text-based chat sys-
tem embodied with an expressive agent. Advances in
Human-Computer Interaction, 2017:1–14.
Albawi, S., Mohammed, T. A., and Al-Zawi, S. (2017).
Understanding of a convolutional neural network. In
2017 International Conference on Engineering and
Technology (ICET), pages 1–6.
Aneja, D., Colburn, A., Faigin, G., Shapiro, L., and Mones,
B. (2016). Modeling stylized character expressions
via deep learning. In Asian Conference on Computer
Vision, pages 136–153. Springer.
Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M.,
and Pollak, S. D. (2019). Emotional expressions re-
considered: challenges to inferring emotion from hu-
man facial movements. Psychological Science in the
Public Interest, 20(1):1–68.
Buechel, S. and Hahn, U. (2017). EmoBank: Studying the
impact of annotation perspective and representation
format on dimensional emotion analysis. In Proceed-
ings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pages 578–585, Valencia, Spain.
Association for Computational Linguistics.
Chen, M., Li, C., Li, K., Zhang, H., and He, X. (2018).
Double encoder conditional gan for facial expression
synthesis. In 2018 37th Chinese Control Conference
(CCC), pages 9286–9291. IEEE.
Cheng, H. and Shi, X. (2004). A simple and effective his-
togram equalization approach to image enhancement.
Digital Signal Processing, 14(2):158–170.
Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo,
J. (2018). Stargan: Unified generative adversarial net-
works for multi-domain image-to-image translation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8789–8797.
Deng, J., Pang, G., Zhang, Z., Pang, Z., Yang, H., and Yang,
G. (2019). cgan based facial expression recognition
for human-robot interaction. IEEE Access, 7:9848–
9859.
Ding, H., Sricharan, K., and Chellappa, R. (2018). Exprgan:
Facial expression editing with controllable expression
intensity. In Thirty-Second AAAI Conference on Arti-
ficial Intelligence.
Frank, M. (2001). Facial expressions. In Smelser, N. J. and
Baltes, P. B., editors, International Encyclopedia of
the Social & Behavioral Sciences, pages 5230–5234.
Pergamon, Oxford.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In
Advances in neural information processing systems,
pages 2672–2680.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2016).
Image-to-image translation with conditional adversar-
ial networks.
Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In 3rd International Confer-
ence on Learning Representations, ICLR 2015.
Lal, A. (2018). glove.6b.50d.txt. https://www.kaggle.com/
watts2/glove6b50dtxt. Last accessed: 22 Nov 2021.
Liu, L., Jiang, R., Huo, J., and Chen, J. (2021). Self-
difference convolutional neural network for facial ex-
pression recognition. Sensors, 21(6):2250.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learn-
ing face attributes in the wild. In Proceedings of In-
ternational Conference on Computer Vision (ICCV).
Mollahosseini, A., Hasani, B., and Mahoor, M. H. (2017).
Affectnet: A database for facial expression, valence,
and arousal computing in the wild. IEEE Transactions
on Affective Computing.
Padilla, R., Filho, C., and Costa, M. (2012). Evaluation of
haar cascade classifiers for face detection.
Pennington, J., Socher, R., and Mannung, C. D. https://nlp.
stanford.edu/projects/glove/. Last accessed: 22 Nov
2021.
Qiao, F., Yao, N., Jiao, Z., Li, Z., Chen, H., and Wang, H.
(2018). Geometry-contrastive gan for facial expres-
sion transfer. arXiv preprint arXiv:1802.01822.
Sherstinsky, A. (2018). Fundamentals of recurrent neural
network (rnn) and long short-term memory (lstm) net-
work. arXiv preprint arXiv:1808.03314.
Sherstinsky, A. (2020). Fundamentals of recurrent neural
network (rnn) and long short-term memory (lstm) net-
work.
Song, L., Lu, Z., He, R., Sun, Z., and Tan, T. (2018). Ge-
ometry guided adversarial facial expression synthesis.
In Proceedings of the 26th ACM international confer-
ence on Multimedia, pages 627–635.
Tarkkanen, K., Harkke, V., and Reijonen, P. (2015). Are
we testing utility? analysis of usability problem types.
In Marcus, A., editor, Design, User Experience, and
Usability: Design Discourse, pages 269–280, Cham.
Springer International Publishing.
Xu, Q., Yang, Y., Tan, Q., and Zhang, L. (2017). Facial ex-
pressions in context: Electrophysiological correlates
of the emotional congruency of facial expressions and
background scenes. Frontiers in Psychology, 8:2175.
Zhang, Z. and Sabuncu, M. R. (2018). Generalized cross
entropy loss for training deep neural networks with
noisy labels.
Zhao, G., Huang, X., Taini, M., Li, S. Z., and Pietik
¨
ainen,
M. (2011). Facial expression recognition from near-
infrared videos.
Zhou, Y. and Shi, B. E. (2017). Photorealistic facial expres-
sion synthesis by the conditional difference adversar-
ial autoencoder. In 2017 seventh international confer-
ence on affective computing and intelligent interaction
(ACII), pages 370–376. IEEE.
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Computer Vision
(ICCV), 2017 IEEE International Conference on.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
924