surance through Data Democratization, a five-year
project (grant number 28885) under the Norwegian
IKTPLUSS-IKT and Digital Innovation programme.
The authors gratefully acknowledge the financial sup-
port from the Research Council of Norway.
REFERENCES
Block, C. C. (2016). Muddy waters report - st. jude medical,
inc. Technical report, Muddy Waters Capital LLC.
Bour, G. N. (2019). Security analysis of the pacemaker
home monitoring unit: A blackbox approach. Mas-
ter’s thesis, NTNU.
Camara, C., Peris-Lopez, P., and Tapiador, J. E. (2015). Se-
curity and privacy issues in implantable medical de-
vices: A comprehensive survey. Journal of biomedi-
cal informatics, 55:272–289.
CISA (2020). ICS Medical Advisory (ICSMA-20-
170-05). https://us-cert.cisa.gov/ics/advisories/
icsma-20-170-05. [Online; accessed 30-Sep-2021].
Denning, T., Fu, K., and Kohno, T. (2008). Absence makes
the heart grow fonder: New directions for implantable
medical device security. In HotSec.
Halperin, D., Heydt-Benjamin, T. S., Ransford, B., Clark,
S. S., Defend, B., Morgan, W., Fu, K., Kohno, T., and
Maisel, W. H. (2008). Pacemakers and implantable
cardiac defibrillators: Software radio attacks and zero-
power defenses. In 2008 IEEE Symposium on Security
and Privacy (sp 2008), pages 129–142. IEEE.
IoT (2020). Secure design best practice guide. [Online].
Justis- og beredskapsdepartementet, Helse- og omsorgsde-
partementet (2005). Forskrift om medisinsk utstyr.
https://lovdata.no/dokument/SF/forskrift/
2005-12-15-1690/%2FT1%2Ftextsection1-5#/T1/
textsection1-5.
Li, C., Raghunathan, A., and Jha, N. K. (2013). Improving
the trustworthiness of medical device software with
formal verification methods. IEEE Embedded Systems
Letters, 5(3):50–53.
Marin, E., Singelée, D., Garcia, F. D., Chothia, T., Willems,
R., and Preneel, B. (2016). On the (in) security of
the latest generation implantable cardiac defibrillators
and how to secure them. In Proceedings of the 32nd
annual conference on computer security applications,
pages 226–236.
OWASP (2020). OWASP embedded application security.
[Online].
Rasmussen, K. B., Castelluccia, C., Heydt-Benjamin, T. S.,
and Capkun, S. (2009). Proximity-based access con-
trol for implantable medical devices. In Proceedings
of the 16th ACM conference on Computer and com-
munications security, pages 410–419.
Richards, R. (2015). Healthcare data breaches cost $6 bil-
lion a year (infographic)t. [Online; posted 16 Novem-
ber 2015].
Rios, B. and Butts, J. (2017). Security evaluation of the
implantable cardiac device ecosystem architecture and
implementation interdependencies.
Rostami, M., Juels, A., and Koushanfar, F. (2013). Heart-
to-heart (h2h) authentication for implanted medical
devices. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 1099–1112.
Savci, H. S., Sula, A., Wang, Z., Dogan, N. S., and Ar-
vas, E. (2005). Mics transceivers: regulatory stan-
dards and applications [medical implant communica-
tions service]. In Proceedings. IEEE SoutheastCon,
2005., pages 179–182. IEEE.
Schechter, S. (2010). Security that is meant to be skin
deep using ultraviolet micropigmentation to store
emergency-access keys for implantable medical de-
vices.
Zheng, G., Shankaran, R., Orgun, M. A., Qiao, L., and
Saleem, K. (2016). Ideas and challenges for secur-
ing wireless implantable medical devices: A review.
IEEE Sensors Journal, 17(3):562–576.
Zheng, G., Yang, W., Valli, C., Qiao, L., Shankaran, R.,
Orgun, M. A., and Mukhopadhyay, S. C. (2018).
Finger-to-heart (f2h): Authentication for wireless im-
plantable medical devices. IEEE journal of biomedi-
cal and health informatics, 23(4):1546–1557.
Zheng, G., Zhang, G., Yang, W., Valli, C., Shankaran, R.,
and Orgun, M. A. (2017). From wannacry to wan-
nadie: Security trade-offs and design for implantable
medical devices. In 2017 17th International Sympo-
sium on Communications and Information Technolo-
gies (ISCIT), pages 1–5. IEEE.
Experimental Security Analysis of Connected Pacemakers
45