actions on pattern analysis and machine intelligence,
volume 43, pages 172–186. IEEE.
Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Real-
time multi-person 2d pose estimation using part affin-
ity fields. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7291–
7299. IEEE.
Cha, K., Lee, E.-Y., Heo, M.-H., Shin, K.-C., Son, J., and
Kim, D. (2015). Analysis of climbing postures and
movements in sport climbing for realistic 3d climbing
animations. In Procedia Engineering, volume 112,
pages 52–57. Elsevier.
CMU (2019). Carnegie Mellon University: Open-
Pose - non-exclusive commercial license.
https://cmu.flintbox.com/technologies/b820c21d-
8443-4aa2-a49f-8919d93a8740, visisted on
24/09/2021.
Colyer, S. L., Evans, M., Cosker, D. P., and Salo, A. I.
(2018). A review of the evolution of vision-based mo-
tion analysis and the integration of advanced computer
vision methods towards developing a markerless sys-
tem. In Sports medicine-open, volume 4, pages 1–15.
SpringerOpen.
Fan, K., Wang, P., Hu, Y., and Dou, B. (2017). Fall de-
tection via human posture representation and support
vector machine. In International journal of distributed
sensor networks, volume 13. SAGE Publications Sage
UK: London, England.
Jansen, W., Laurijssen, D., Daems, W., and Steckel, J.
(2019). Automatic calibration of a six-degrees-of-
freedom pose estimation system. In IEEE Sensors
Journal, volume 19, pages 8824–8831. IEEE.
Kalman, R. E. (1960). A new approach to linear fil-
tering and prediction problems. In Transactions of
the ASME–Journal of Basic Engineering, volume 82,
pages 35–45.
Khuangga, M. C. and Widyantoro, D. H. (2018). Human
identification using human body features extraction.
In 2018 International Conference on Advanced Com-
puter Science and Information Systems (ICACSIS),
pages 397–402. IEEE.
Kosmalla, F., Zenner, A., Tasch, C., Daiber, F., and Kr
¨
uger,
A. (2020). The importance of virtual hands and feet
for virtual reality climbing. In Extended Abstracts of
the 2020 CHI Conference on Human Factors in Com-
puting Systems, pages 1–8. Association for Comput-
ing Machinery.
Kuli
´
c, D., Kragic, D., and Kr
¨
uger, V. (2011). Learning ac-
tion primitives. Visual analysis of humans, pages 333–
353. Springer.
Lin, J. F.-S., Karg, M., and Kuli
´
c, D. (2016). Movement
primitive segmentation for human motion modeling:
A framework for analysis. In IEEE Transactions on
Human-Machine Systems, volume 46, pages 325–339.
IEEE.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
McCay, K. D., Ho, E. S., Shum, H. P., Fehringer, G., Mar-
croft, C., and Embleton, N. D. (2020). Abnormal in-
fant movements classification with deep learning on
pose-based features. In IEEE Access, volume 8, pages
51582–51592. IEEE.
Meier, F., Theodorou, E., Stulp, F., and Schaal, S. (2011).
Movement segmentation using a primitive library. In
2011 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 3407–3412. IEEE.
Papandreou, G., Zhu, T., Chen, L.-c., Gidaris, S., Tompson,
J., and Murphy, K. (2018). PersonLab: Person pose
estimation and instance segmentation with a bottom-
up, part-based, geometric embedding model.
Richter, J., Beltr
´
an B., R., and Heinkel, U. (2020a).
Camera-based climbing analysis for a therapeutic
training system. In Current Directions in Biomedical
Engineering, volume 6. De Gruyter.
Richter, J., Beltr
´
an B., R., K
¨
ostermeyer, G., and Heinkel,
U. (2020b). Human climbing and bouldering motion
analysis: A survey on sensors, motion capture, anal-
ysis algorithms, recent advances and applications. In
VISIGRAPP (5: VISAPP), pages 751–758.
Savitzky, A. and Golay, M. J. (1964). Smoothing and dif-
ferentiation of data by simplified least squares pro-
cedures. In Analytical chemistry, volume 36, pages
1627–1639. ACS Publications.
Seifert, L., Dovgalecs, V., Boulanger, J., Orth, D., H
´
erault,
R., and Davids, K. (2014). Full-body movement pat-
tern recognition in climbing. In Sports Technology,
volume 7, pages 166–173. Taylor & Francis.
V
¨
ogele, A., Kr
¨
uger, B., and Klein, R. (2014). Efficient un-
supervised temporal segmentation of human motion.
acm siggraph. In Eurographics Symposium on Com-
puter Animation.
Winter, S. (2012). Klettern & Bouldern: Kletter-
und Sicherungstechnik f
¨
ur Einsteiger, pages 90–91.
Rother Bergverlag.
Xiaohui, T., Xiaoyu, P., Liwen, L., and Qing, X. (2018).
Automatic human body feature extraction and per-
sonal size measurement. In Journal of Visual Lan-
guages & Computing, volume 47, pages 9–18. Else-
vier.
Zago, M., Luzzago, M., Marangoni, T., De Cecco, M., Tara-
bini, M., and Galli, M. (2020). 3d tracking of human
motion using visual skeletonization and stereoscopic
vision. In Frontiers in bioengineering and biotechnol-
ogy, volume 8, page 181. Frontiers.
Zheng, C., Wu, W., Yang, T., Zhu, S., Chen, C., Liu, R.,
Shen, J., Kehtarnavaz, N., and Shah, M. (2020). Deep
learning-based human pose estimation: A survey.
Automated Human Movement Segmentation by Means of Human Pose Estimation in RGB-D Videos for Climbing Motion Analysis
373