Ferreira, F., Gago, M., Mollaei, N., Bicho, E., Sousa, N.,
Gama, J., and Ferreira, C. (2020). Objective graphi-
cal clustering of spatiotemporal gait pattern in patients
with parkinsonism. In AIP Conference Proceedings,
volume 2293, page 420101. AIP Publishing LLC.
Gago, M., Ferreira, F. R., Mollaei, N., Rodrigues, M.,
Sousa, N., Bicho, E., and Rodrigues, P. (2017). Gait
analysis as a complementary tool in the levodopa dose
decision in vascular parkinson’s disease.
Golas, S. B., Shibahara, T., Agboola, S., Otaki, H., Sato,
J., Nakae, T., Hisamitsu, T., Kojima, G., Felsted, J.,
Kakarmath, S., et al. (2018). A machine learning
model to predict the risk of 30-day readmissions in
patients with heart failure: a retrospective analysis of
electronic medical records data. BMC medical infor-
matics and decision making, 18(1):1–17.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.
Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., and
Leser, U. (2017). Deep learning with word embed-
dings improves biomedical named entity recognition.
Bioinformatics, 33(14):i37–i48.
Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie,
T. J., and Delp, S. L. (2018). Machine learning in
human movement biomechanics: Best practices, com-
mon pitfalls, and new opportunities. Journal of biome-
chanics, 81:1–11.
Jang, H.-J. and Cho, K.-O. (2019). Applications of deep
learning for the analysis of medical data. Archives of
pharmacal research, 42(6):492–504.
Kim, Y., Lee, J. H., Choi, S., Lee, J. M., Kim, J.-H., Seok,
J., and Joo, H. J. (2020). Validation of deep learn-
ing natural language processing algorithm for key-
word extraction from pathology reports in electronic
health records. Scientific Reports, 10(1):1–9.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kingma, D. P. and Welling, M. (2014). Stochastic gradi-
ent vb and the variational auto-encoder. In Second In-
ternational Conference on Learning Representations,
ICLR, volume 19.
Lakshmi, K. S. and Vadivu, G. (2017). Extracting associ-
ation rules from medical health records using multi-
criteria decision analysis. Procedia Computer Sci-
ence, 115:290–295.
Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. (2016). Neural architectures
for named entity recognition. arXiv preprint
arXiv:1603.01360.
Liu, L., Shang, J., Ren, X., Xu, F., Gui, H., Peng, J.,
and Han, J. (2018). Empower sequence labeling with
task-aware neural language model. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.
Marafino, B. J., Davies, J. M., Bardach, N. S., Dean, M. L.,
and Dudley, R. A. (2014). N-gram support vector ma-
chines for scalable procedure and diagnosis classifica-
tion, with applications to clinical free text data from
the intensive care unit. Journal of the American Med-
ical Informatics Association, 21(5):871–875.
Miotto, R., Li, L., Kidd, B. A., and Dudley, J. T. (2016).
Deep patient: an unsupervised representation to pre-
dict the future of patients from the electronic health
records. Scientific reports, 6(1):1–10.
Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y., et al. (2014). Generative adversarial
nets. Proceedings of Advances in Neural Information
Processing Systems.
Mitrofan, M. and Ion, R. (2017). Adapting the ttl roma-
nian pos tagger to the biomedical domain. In Biomed-
icalNLP@ RANLP, pages 8–14.
Mollaei, N., Londral, A. R., Cepeda, C., Azevedo, S., San-
tos, J. P., Coelho, P., Fragata, J., and Gamboa, H.
(2021). Length of stay prediction in acute intensive
care unit in cardiothoracic surgery patients. In 2021
Seventh International conference on Bio Signals, Im-
ages, and Instrumentation (ICBSII), pages 1–5.
Nadkarni, P. M., Ohno-Machado, L., and Chapman, W. W.
(2011). Natural language processing: an introduction.
Journal of the American Medical Informatics Associ-
ation, 18(5):544–551.
Nguyen, T. D. and Luong, M.-T. (2010). Wingnus:
Keyphrase extraction utilizing document logical struc-
ture. In Proceedings of the 5th international workshop
on semantic evaluation, pages 166–169.
Ojo, A. K. and Olanrewaju, A. B. (2019). Knowledge dis-
covery in medical database using machine learning
techniques. International Journal of Computer Ap-
plications, 975:8887.
Pardo, T. A. S., Nunes, M. d. G. V., and Rino, L. H. M.
(2004). Dizer: An automatic discourse analyzer for
brazilian portuguese. In Brazilian Symposium on Ar-
tificial Intelligence, pages 224–234. Springer.
Provost, F. and Kohavi, R. (1998). Glossary of terms. Jour-
nal of Machine Learning, 30(2-3):271–274.
Rakhlin, A. (2016). Convolutional neural networks for sen-
tence classification. GitHub.
Rav
`
ı, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-
Perez, J., Lo, B., and Yang, G.-Z. (2016). Deep learn-
ing for health informatics. IEEE journal of biomedical
and health informatics, 21(1):4–21.
Ren, S., Li, Z., Wang, H., Li, Y., Shen, K., and Cheng, S.
(2018). Nearm: Natural language enhanced associa-
tion rules mining. In 2018 IEEE International Con-
ference on Data Mining Workshops (ICDMW), pages
438–445. IEEE.
Rino, L. H. M., Pardo, T. A. S., Silla, C. N., Kaestner, C.
A. A., and Pombo, M. (2004). A comparison of auto-
matic summarizers of texts in brazilian portuguese. In
Brazilian Symposium on Artificial Intelligence, pages
235–244. Springer.
Rodrigues, J., Gamboa, H., Mollaei, N., Os
´
orio, D.,
Assunc¸
˜
ao, A., Fuj
˜
ao, C., and Carnide, F. (2020). A ge-
netic algorithm to design job rotation schedules with
low risk exposure. In Doctoral Conference on Com-
puting, Electrical and Industrial Systems, pages 395–
402. Springer.
Biomedical Text Mining: Applicability of Machine Learning-based Natural Language Processing in Medical Database
165