Epanechnikov, V. (1969). Non-parametric estimation of a
multivariate probability density. Theor Probab Appl+,
14.
Espadoto, M., Hirata, N., and Telea, A. (2020). Deep
learning multidimensional projections. Inform Visual,
9(3):247–269.
Espadoto, M., Hirata, N., and Telea, A. (2021). Self-
supervised dimensionality reduction with neural net-
works and pseudo-labeling. In Proc. IVAPP.
Espadoto, M., Martins, R., Kerren, A., Hirata, N., and
Telea, A. (2019). Toward a quantitative survey
of dimension reduction techniques. IEEE TVCG,
27(3):2153–2173.
Fisher, R. A. (1936). The use of multiple measurements in
taxonomic problems. Annals of eugenics, 7(2):179–
188.
Fukunaga, K. and Hostetler, L. (1975). The estimation of
the gradient of a density function, with applications in
pattern recognition. IEEE Trans Inf Theor, 21(1):32–
40.
Gaia Collaboration (2016). The Gaia mission. Astronomy
& Astrophysics, 595, A1.
Gaia Collaboration (2018). Gaia Data Release 2-Summary
of the contents and survey properties. Astronomy &
Astrophysics, 616, A1.
Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.
http://eigen.tuxfamily.org.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving
deep into rectifiers: Surpassing human-level perfor-
mance on ImageNet classification. In Proc. ICCV,
pages 1026–1034.
Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. Sci-
ence, 313(5786):504–507. Publisher: AAAS.
Hoffman, P. and Grinstein, G. (2002). A survey of visual-
izations for high-dimensional data mining. In Infor-
mation Visualization in Data Mining and Knowledge
Discovery, pages 47–82.
Hopkins, M., Reeber, E., Forman, G., and Suermondt, J.
(1999). Spambase dataset. Hewlett-Packard Labs.
Hurter, C., Ersoy, O., and Telea, A. (2012). Graph bundling
by kernel density estimation. Comp Graph Forum,
31(3):865–874.
Inselberg, A. and Dimsdale, B. (1990). Parallel coordinates:
A tool for visualizing multi-dimensional geometry. In
Proc. IEEE Visualization, pages 361–378.
Joia, P., Coimbra, D., Cuminato, J. A., Paulovich, F. V., and
Nonato, L. G. (2011). Local affine multidimensional
projection. IEEE TVCG, 17(12):2563–2571.
Jolliffe, I. T. (1986). Principal component analysis and fac-
tor analysis. In Principal Component Analysis, pages
115–128. Springer.
Kim, Y., Telea, A., Trager, S., and Roerdink, J. B.
T. M. (2021). Visual cluster separation using
high-dimensional sharpened dimensionality reduc-
tion. arXiv:2110.00317 [cs.CV].
Kim, Y., Espadoto, M., Trager, S. C., Roerdink, J. B. T. M.,
and Telea, A. C. (2021a). SDR-NNP implementation
and results. https://github.com/youngjookim/sdr-nnp.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv:1412.6980.
Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. CoRR, abs/1312.6114. eprint:
1312.6114.
Kohonen, T. (1997). Self-organizing Maps. Springer.
LeCun, Y. and Cortes, C. (2010). MNIST handwritten digits
dataset. http://yann.lecun.com/exdb/mnist.
Lisitsyn, S., Widmer, C., and Garcia, F. J. I. (2013). Tap-
kee: An efficient dimension reduction library. JMLR,
14:2355–2359.
Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., and
Pascucci, V. (2015). Visualizing high-dimensional
data: Advances in the past decade. IEEE TVCG,
23(3):1249–1268.
Maaten, L. v. d. (2014). Accelerating t-SNE using tree-
based algorithms. JMLR, 15:3221–3245.
Maaten, L. v. d. and Hinton, G. (2008). Visualizing data
using t-SNE. JMLR, 9:2579–2605.
Maaten, L. v. d. and Postma, E. (2009). Dimensionality
reduction: A comparative review. Technical report,
Tilburg Univ.
Martins, R. M., Minghim, R., Telea, A. C., and others
(2015). Explaining neighborhood preservation for
multidimensional projections. In Proc. CGVC, pages
7–14.
McInnes, L. and Healy, J. (2018). UMAP: Uniform man-
ifold approximation and projection for dimension re-
duction. arXiv:1802.03426v1 [stat.ML].
Nonato, L. and Aupetit, M. (2018). Multidimensional
projection for visual analytics: Linking techniques
with distortions, tasks, and layout enrichment. IEEE
TVCG.
Paulovich, F. V. and Minghim, R. (2006). Text map ex-
plorer: a tool to create and explore document maps.
In Proc. Information Visualisation, pages 245–251.
IEEE.
Paulovich, F. V., Nonato, L. G., Minghim, R., and Lev-
kowitz, H. (2008). Least square projection: A fast
high-precision multidimensional projection technique
and its application to document mapping. IEEE
TVCG, 14(3):564–575.
Pezzotti, N., H
¨
ollt, T., Lelieveldt, B., Eisemann, E., and
Vilanova, A. (2016). Hierarchical stochastic neighbor
embedding. Comp Graph Forum, 35(3):21–30.
Pezzotti, N., Lelieveldt, B., Maaten, L. v. d., H
¨
ollt, T., Eise-
mann, E., and Vilanova, A. (2017). Approximated and
user steerable t-SNE for progressive visual analytics.
IEEE TVCG, 23:1739–1752.
Pezzotti, N., Thijssen, J., Mordvintsev, A., Hollt, T., Lew,
B. v., Lelieveldt, B., Eisemann, E., and Vilanova, A.
(2020). GPGPU linear complexity t-SNE optimiza-
tion. IEEE TVCG, 26(1):1172–1181.
Rao, R. and Card, S. K. (1994). The table lens: Merging
graphical and symbolic representations in an interac-
tive focus+context visualization for tabular informa-
tion. In Proc. ACM SIGCHI, pages 318–322.
Rauber, P. E., Falc
˜
ao, A. X., and Telea, A. C. (2017). Pro-
jections as visual aids for classification system design.
Inform Visual, 17(4):282–305.
Roweis, S. T. and Saul, L. L. K. (2000). Nonlinear dimen-
sionality reduction by locally linear embedding. Sci-
ence, 290(5500):2323–2326.
IVAPP 2022 - 13th International Conference on Information Visualization Theory and Applications
74