ACKNOWLEDGEMENTS
This project has received funding from the European
Research Council (ERC) under the EU Horizon 2020
research and innovation programme [grant reference
SCENT-ERC-2014-STG-639123, (2015-2022)] and
by national funds from FCT - Fundac¸
˜
ao para a
Ci
ˆ
encia e a Tecnologia, I.P., in the scope of the
project UIDP/04378/2020 and UIDB/04378/2020 of
the Research Unit on Applied Molecular Biosciences
– UCIBIO and the project LA/P/0140/2020 of the As-
sociate Laboratory Institute for Health and Bioecon-
omy - i4HB, which is financed by national funds from
financed by FCT/MEC (UID/Multi/04378/2019).
This work was also partly supported by Fundac¸
˜
ao
para a Ci
ˆ
encia e Tecnologia, under PhD grant
PD/BDE/142816/2018.
REFERENCES
Bos, L. D. J., Sterk, P. J., and Schultz, M. J. (2013).
Volatile Metabolites of Pathogens: A Systematic Re-
view. PLoS Pathogens, 9(5):e1003311.
Bruins, M., Rahim, Z., Bos, A., van de Sande, W. W., Endtz,
H. P., and van Belkum, A. (2013). Diagnosis of active
tuberculosis by e-nose analysis of exhaled air. Tuber-
culosis, 93(2):232–238.
Chandler, R., Das, A., Gibson, T., and Dutta, R. (2015). De-
tection of oil pollution in seawater: Biosecurity pre-
vention using electronic nose technology. In 2015 31st
IEEE International Conference on Data Engineering
Workshops, volume 2015-June, pages 98–100. IEEE.
Chen, L.-Y., Wong, D.-M., Fang, C.-Y., Chiu, C.-I., Chou,
T.-I., Wu, C.-C., Chiu, S.-W., and Tang, K.-T. (2018).
Development of an electronic-nose system for fruit
maturity and quality monitoring. In 2018 IEEE In-
ternational Conference on Applied System Invention
(ICASI), pages 1129–1130. IEEE.
Coronel Teixeira, R., Rodr
´
ıguez, M., Jim
´
enez de Romero,
N., Bruins, M., G
´
omez, R., Yntema, J. B., Cha-
parro Abente, G., Gerritsen, J. W., Wiegerinck, W.,
P
´
erez Bejerano, D., and Magis-Escurra, C. (2017).
The potential of a portable, point-of-care electronic
nose to diagnose tuberculosis. Journal of Infection,
75(5):441–447.
Di Natale, C., Macagnano, A., Martinelli, E., Paolesse, R.,
D’Arcangelo, G., Roscioni, C., Finazzi-Agr
`
o, A., and
D’Amico, A. (2003). Lung cancer identification by
the analysis of breath by means of an array of non-
selective gas sensors. Biosensors and Bioelectronics,
18(10):1209–1218.
Esteves, C., Santos, G. M., Alves, C., Palma, S. I., Porteira,
A. R., Filho, J., Costa, H. M., Alves, V. D., Morais
Faustino, B. M., Ferreira, I., Gamboa, H., and Roque,
A. C. (2019). Effect of film thickness in gelatin hy-
brid gels for artificial olfaction. Materials Today Bio,
1(December 2018):100002.
Fens, N., Zwinderman, A. H., van der Schee, M. P., de Nijs,
S. B., Dijkers, E., Roldaan, A. C., Cheung, D., Bel,
E. H., and Sterk, P. J. (2009). Exhaled Breath Pro-
filing Enables Discrimination of Chronic Obstruc-
tive Pulmonary Disease and Asthma. American
Journal of Respiratory and Critical Care Medicine,
180(11):1076–1082.
Fraz
˜
ao, J., Palma, S. I. C. J., Costa, H. M. A., Alves, C.,
Roque, A. C. A., and Silveira, M. (2021). Optical Gas
Sensing with Liquid Crystal Droplets and Convolu-
tional Neural Networks. Sensors, 21(8):2854.
HaCohen-Kerner, Y., Miller, D., and Yigal, Y. (2020). The
influence of preprocessing on text classification using
a bag-of-words representation. PLOS ONE, 15(5):1–
22.
Hockstein, N. G., Thaler, E. R., Lin, Y., Lee, D. D., and
Hanson, C. W. (2005). Correlation of Pneumonia
Score with Electronic Nose Signature: A Prospective
Study. Annals of Otology, Rhinology & Laryngology,
114(7):504–508.
Hockstein, N. G., Thaler, E. R., Torigian, D., Miller,
W. T., Deffenderfer, O., and Hanson, C. W. (2004).
Diagnosis of Pneumonia With an Electronic Nose:
Correlation of Vapor Signature With Chest Com-
puted Tomography Scan Findings. The Laryngoscope,
114(10):1701–1705.
Hu, W., Wan, L., Jian, Y., Ren, C., Jin, K., Su, X., Bai, X.,
Haick, H., Yao, M., and Wu, W. (2018). Electronic
Noses: From Advanced Materials to Sensors Aided
with Data Processing. Advanced Materials Technolo-
gies, 4(2):1–38.
Hussain, A., Semeano, A. T. S., Palma, S. I. C. J., Pina,
A. S., Almeida, J., Medrado, B. F., P
´
adua, A. C.
C. S., Carvalho, A. L., Dion
´
ısio, M., Li, R. W. C.,
Gamboa, H., Ulijn, R. V., Gruber, J., and Roque, A.
C. A. (2017). Tunable Gas Sensing Gels by Coop-
erative Assembly. Advanced Functional Materials,
27(27):1700803.
Karakaya, D., Ulucan, O., and Turkan, M. (2020). Elec-
tronic Nose and Its Applications: A Survey. In-
ternational Journal of Automation and Computing,
17(2):179–209.
Keogh, E., Lonardi, S., and Ratanamahatana, C. A. (2004).
Towards parameter-free data mining. In Proceedings
of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’04,
page 206–215, New York, NY, USA. Association for
Computing Machinery.
Lee, Y.-S., Joo, B.-S., Choi, N.-J., Lim, J.-O., Huh, J.-S.,
and Lee, D.-D. (2003). Visible optical sensing of am-
monia based on polyaniline film. Sensors and Actua-
tors B: Chemical, 93(1-3):148–152.
Lin, J., Keogh, E., Wei, L., and Lonardi, S. (2007). Expe-
riencing sax: A novel symbolic representation of time
series. Data Min. Knowl. Discov., 15:107–144.
Lin, J., Khade, R., and Li, Y. (2012). Rotation-invariant
similarity in time series using bag-of-patterns repre-
sentation. J. Intell. Inf. Syst., 39(2):287–315.
P
´
adua, A. C., Palma, S., Gruber, J., Gamboa, H., and
Roque, A. C. (2018). Design and evolution of an opto-
electronic device for VOCs detection. BIODEVICES
BIOSIGNALS 2022 - 15th International Conference on Bio-inspired Systems and Signal Processing
38