scoring model (CCS) to assist in creating characters
that cause comfortable perception seems valid. How-
ever, more tests are needed since we only tested on 19
characters and 5730 images. However, it is essential
to note that the ground truth is formed by the subjects’
opinions, making this a real challenge in our work.
REFERENCES
Araujo, V., Dalmoro, B., and Musse, S. R. (2021). Anal-
ysis of charisma, comfort and realism in cg charac-
ters from a gender perspective. The Visual Computer,
37(9):2685–2698.
Bailenson, J. N., Swinth, K., Hoyt, C., Persky, S., Di-
mov, A., and Blascovich, J. (2005). The independent
and interactive effects of embodied-agent appearance
and behavior on self-report, cognitive, and behavioral
markers of copresence in immersive virtual environ-
ments. Presence: Teleoperators & Virtual Environ-
ments, 14(4):379–393.
Chaminade, T., Hodgins, J., and Kawato, M. (2007). An-
thropomorphism influences perception of computer-
animated characters’ actions. Social cognitive and af-
fective neuroscience, 2(3):206–216.
Dal Molin, G. P., Nomura, F. M., Dalmoro, B. M.,
de A. Ara
´
ujo, V. F., and Musse, S. R. (2021). Can
we estimate the perceived comfort of virtual human
faces using visual cues? In 2021 IEEE 15th Inter-
national Conference on Semantic Computing (ICSC),
pages 366–369.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In 2005 IEEE com-
puter society conference on computer vision and pat-
tern recognition (CVPR’05), volume 1, pages 886–
893. IEEE.
Flach, L. M., de Moura, R. H., Musse, S. R., Dill, V., Pinho,
M. S., and Lykawka, C. (2012). Evaluation of the un-
canny valley in cg characters. In Proceedings of the
Brazilian Symposium on Computer Games and Dig-
ital Entertainmen (SBGames)(Brasi
`
ılia), pages 108–
116.
Gouskos, C. (2006). The depths of the un-
canny valley. DOI= http://uk. gamespot.
com/features/6153667/index. html.
Howse, J. (2013). OpenCV computer vision with python.
Packt Publishing Ltd.
Hyde, J., Carter, E. J., Kiesler, S., and Hodgins, J. K. (2016).
Evaluating animated characters: Facial motion magni-
tude influences personality perceptions. ACM Trans-
actions on Applied Perception (TAP), 13(2):8.
K
¨
atsyri, J., F
¨
orger, K., M
¨
ak
¨
ar
¨
ainen, M., and Takala, T.
(2015). A review of empirical evidence on differ-
ent uncanny valley hypotheses: support for perceptual
mismatch as one road to the valley of eeriness. Fron-
tiers in psychology, 6:390.
K
¨
atsyri, J., M
¨
ak
¨
ar
¨
ainen, M., and Takala, T. (2017). Test-
ing the ’uncanny valley’ hypothesis in semirealis-
tic computer-animated film characters: An empirical
evaluation of natural film stimuli. International Jour-
nal of Human-Computer Studies, 97:149–161.
Liu, J. (2010). Fuzzy modularity and fuzzy community
structure in networks. Eur. Phys. J. B., 77:547–557.
Liu, L., Liu, B., Huang, H., and Bovik, A. C. (2014).
No-reference image quality assessment based on spa-
tial and spectral entropies. Signal Processing: Image
Communication, 29(8):856–863.
MacDorman, K. F. and Chattopadhyay, D. (2016). Reduc-
ing consistency in human realism increases the un-
canny valley effect; increasing category uncertainty
does not. Cognition, 146:190–205.
MacDorman, K. F., Coram, J. A., Ho, C.-C., and Patel, H.
(2010). Gender differences in the impact of presen-
tational factors in human character animation on de-
cisions in ethical dilemmas. Presence: Teleoperators
and Virtual Environments, 19(3):213–229.
Mori, M. (1970). Bukimi no tani [the uncanny valley]. En-
ergy, 7:33–35.
Prakash, A. and Rogers, W. A. (2015). Why some hu-
manoid faces are perceived more positively than oth-
ers: effects of human-likeness and task. International
journal of social robotics, 7(2):309–331.
Rosebrock, A. (2017). Facial landmarks with dlib opencv
and python-pyimagesearch. PyImageSearch.
Shahid, M., Rossholm, A., L
¨
ovstr
¨
om, B., and Zepernick,
H.-J. (2014). No-reference image and video quality
assessment: a classification and review of recent ap-
proaches. EURASIP Journal on image and Video Pro-
cessing, 2014(1):40.
Sponring, J. (1996). The entropy of scale-space. In Pro-
ceedings of 13th International Conference on Pattern
Recognition, volume 1, pages 900–904. IEEE.
Tinwell, A., Grimshaw, M., Nabi, D. A., and Williams, A.
(2011). Facial expression of emotion and perception
of the uncanny valley in virtual characters. Computers
in Human Behavior, 27(2):741–749.
Tumblin, J. and Ferwerda, J. A. (2001). Applied percep-
tion. IEEE Computer Graphics and Applications,
21(5):20–21.
Van der Walt, S., Sch
¨
onberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart, E.,
and Yu, T. (2014). scikit-image: image processing in
python. PeerJ, 2:e453.
Viola, P. and Jones, M. (2001). Rapid object detection us-
ing a boosted cascade of simple features. In Proceed-
ings of the 2001 IEEE computer society conference on
computer vision and pattern recognition. CVPR 2001,
volume 1, pages I–I. IEEE.
Von Bergen, J. (2010). Queasy about avatars and hiring
employees.
Zell, E., Zibrek, K., and McDonnell, R. (2019). Percep-
tion of virtual characters. In ACM SIGGRAPH 2019
Courses, pages 1–17.
ˇ
Zuni
´
c, J., Hirota, K., and Rosin, P. L. (2010). A hu mo-
ment invariant as a shape circularity measure. Pattern
Recognition, 43(1):47–57.
Estimating Perceived Comfort in Virtual Humans based on Spatial and Spectral Entropy
443