Bai, B., Liu, P. Z., Du, Y. Z., & Luo, Y. M. (2018).
Automatic segmentation of cervical region in
colposcopic images using K-means. Australas Phys
Eng Sci Med, 41(4), 1077-1085. https://doi.org/
10.1007/s13246-018-0678-z
Basu, P., & Sankaranarayanan, R. (2017). Atlas of
Colposcopy – Principles and Practice. IARC
CancerBase. https://screening.iarc.fr/atlascolpo.php
Bratti, M. C., Rodríguez, A. C., Schiffman, M., Hildesheim,
A., Morales, J., Alfaro, M., Herrero, R. (2004).
Description of a seven-year prospective study of human
papillomavirus infection and cervical neoplasia among
10000 women in Guanacaste, Costa Rica, Rev Panam
Salud Publica, 15(2), 75-89. https://doi.org/10.1590/
s1020-49892004000200002
Burger, W., & Burge, M. J. (2016). Digital Image
Processing (2 ed.). Springer-Verlag London.
https://doi.org/10.1007/978-1-4471-6684-9
Castle, P. E., Stoler, M. H., Solomon, D., & Schiffman, M.
(2007). The relationship of community biopsy-
diagnosed cervical intraepithelial neoplasia grade 2 to
the quality control pathology-reviewed diagnoses: an
ALTS report. Am J Clin Pathol, 127(5), 805-815.
https://doi.org/10.1309/PT3PNC1QL2F4D2VL
Das, A., Avijit, K., & Bhattacharyya, D. (2011).
Elimination of specular reflection and identification of
ROI: The first step in automated detection of Cervical
Cancer using Digital Colposcopy 2011 IEEE
International Conference on Imaging Systems and
Techniques.
Das, A., & Choudhury, A. (2017). A novel humanitarian
technology for early detection of cervical neoplasia:
ROI extraction and SR detection. 2017 IEEE Region 10
Humanitarian Technology Conference (R10-HTC),
Dhaka.
Fernandes, K., Cardoso, J. S., & Fernandes, J. (2017).
Transfer Learning with Partial Observability Applied to
Cervical Cancer Screening. In L. A. Alexandre, J.
Salvador Sánchez, & J. M. F. Rodrigues, Pattern
Recognition and Image Analysis Cham.
Gerig, G., Jomier, M., & Chakos, M. (2001). Valmet: A
New Validation Tool for Assessing and Improving 3D
Object Segmentation. In W. J. Niessen & M. A.
Viergever, Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2001 Berlin,
Heidelberg.
Greenspan, H., Gordon, S., Zimmerman, G., Lotenberg, S.,
Jeronimo, J., Antani, S., & Long, R. (2009). Automatic
detection of anatomical landmarks in uterine cervix
images. IEEE Trans Med Imaging, 28(3), 454-468.
https://doi.org/10.1109/TMI.2008.2007823
Guo, P., Xue, Z., Long, L. R., & Antani, S. (2020). Cross-
Dataset Evaluation of Deep Learning Networks for
Uterine Cervix Segmentation. Diagnostics (Basel),
10(1).
Hu, L., Bell, D., Antani, S., Xue, Z., Yu, K., Horning, M.
P., Schiffman, M. (2019). An Observational Study of
Deep Learning and Automated Evaluation of Cervical
Images for Cancer Screening. J Natl Cancer Inst
,
111(9), 923-932. https://doi.org/10.1093/jnci/djy225
Kudva, V., & Prasad, K. (2018). Pattern Classification of
Images from Acetic Acid-Based Cervical Cancer
Screening: A Review. Crit Rev Biomed Eng, 46(2),
117-133. https://doi.org/10.1615/CritRevBiomedEng.2
018026017
Lange, H. (2005). Automatic glare removal in reflectance
imagery of the uterine cervix. Proceedings of SPIE -
The International Society for Optical Engineering,
Li, W., & Poirson, A. (2006). Detection and
Characterization of Abnormal Vascular Patterns in
Automated Cervical Image Analysis. In G. Bebis, R.
Boyle, B. Parvin, D. Koracin, P. Remagnino, A. Nefian,
G. Meenakshisundaram, V. Pascucci, J. Zara, J.
Molineros, H. Theisel, & T. Malzbender, Advances in
Visual Computing Berlin, Heidelberg.
Luo, M., Ma, Y.-F., & Zhang, H.-J. (2003). A Spatial
Constrained K-means A pproach to Image
Segmentation Joint Conference of the Fourth
International Conference on Information,
Communications and Signal Processing, 2003 and
Fourth Pacific Rim Conference on Multimedia
Singapore.
Meslouhi, O., Kardouchi, M., Allali, H., Gadi, T., &
Benkaddour, Y. (2011). Automatic detection and
inpainting of specular reflections for colposcopic
images. Open Computer Science, 1(3).
Sankaranarayanan, R., Shastri, S. S., Basu, P., Mahé, C.,
Mandal, R., Amin, G., Dinshaw, K. (2004). The role of
low-level magnification in visual inspection with acetic
acid for the early detection of cervical neoplasia.
Cancer Detect Prev, 28(5), 345-351. https://doi.org/
10.1016/j.cdp.2004.04.004
Sankaranarayanan, R., Wesley, R., Thara, S., Dhakad, N.,
Chandralekha, B., Sebastian, P., Nair, M. K. (2003).
Test characteristics of visual inspection with 4% acetic
acid (VIA) and Lugol's iodine (VILI) in cervical cancer
screening in Kerala, India. Int J Cancer, 106(3), 404-
408. https://doi.org/10.1002/ijc.11245
Schiffman, M., & Adrianza, M. E. (2000). ASCUS-LSIL
Triage Study. Design, methods and characteristics of
trial participants. Acta Cytol, 44(5), 726-742.
https://doi.org/10.1159/000328554
Tariq, H., & Burney, S. M. A. (2014). K-Means Cluster
Analysis for Image Segmentation. International
Journal of Computer Applications, 96.