Lee, H., Park, M., and Kim, J. (2016). Plankton classifica-
tion on imbalanced large scale database via convolu-
tional neural networks with transfer learning. In ICIP,
pages 3713–3717, Phoenix, AZ, USA. IEEE.
Li, Y., Wang, T., Kang, B., Tang, S., Wang, C., Li, J., and
Feng, J. (2020). Overcoming classifier imbalance for
long-tail object detection with balanced group soft-
max. In CVPR, pages 10991–11000.
Liu, X.-Y., Wu, J., and Zhou, Z.-H. (2009). Exploratory
undersampling for class-imbalance learning. Trans.
Sys. Man Cyber. Part B, 39(2):539–550.
MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In Cam,
L. M. L. and Neyman, J., editors, Berkeley Symp on
Math Stat and Prob, volume 1, pages 281–297. Univ
of Calif Press.
Majumder, A., Dutta, S., Kumar, S., and Behera, L. (2020).
A method for handling multi-class imbalanced data
by geometry based information sampling and class
prioritized synthetic data generation (gicaps). ArXiv,
abs/2010.05155.
McInnes, L., Healy, J., and Melville, J. (2018). UMAP:
Uniform manifold approximation and projection for
dimension reduction. ArXiv, abs/1802.03426.
Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev,
O., Venkatesh, G., and Wu, H. (2018). Mixed preci-
sion training. In ICLR, Vancouver, CA.
More, A. (2016). Survey of resampling techniques for
improving classification performance in unbalanced
datasets. ArXiv, abs/1608.06048.
Mullick, S. S., Datta, S., and Das, S. (2019). Generative
adversarial minority oversampling. In ICCV, pages
1695–1704, Seoul, South Korea. IEEE.
Ng, W. W., Xu, S., Zhang, J., Tian, X., Rong, T., and
Kwong, S. (2020). Hashing-based undersampling
ensemble for imbalanced pattern classification prob-
lems. Transactions on Cybernetics.
Nguyen, A., Yosinski, J., and Clune, J. (2016). Multifaceted
feature visualization: Uncovering the different types
of features learned by each neuron in deep neural net-
works. ArXiv, abs/1602.03616.
Pearson, K. (1901). LIII. On lines and planes of closest
fit to systems of points in space. London, Edinburgh
Dublin Philos Mag J Sci, 2(11):559–572.
Pouyanfar, S., Tao, Y., Mohan, A., Tian, H., Kaseb, A. S.,
Gauen, K., Dailey, R., Aghajanzadeh, S., Lu, Y. H.,
Chen, S. C., and Shyu, M. L. (2018). Dynamic sam-
pling in convolutional neural networks for imbalanced
data classification. In MIPR, Proc MIPR 2018, pages
112–117. Inst Electrical and Electronics Engineers
Inc.
Reza, M. S. and Ma, J. (2018). Imbalanced histopatholog-
ical breast cancer image classification with convolu-
tional neural network. In ICSP, pages 619–624. IEEE.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis. J.
Comput. Appl. Math., 20(1):53–65.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
genet large scale visual recognition challenge. IJCV,
115(3):211–252.
Sarkar, D., Narang, A., and Rai, S. (2020). Fed-focal loss
for imbalanced data classification in federated learn-
ing. ArXiv, abs/2011.06283.
Shen, L., Lin, Z., and Huang, Q. (2016). Relay backprop-
agation for effective learning of deep convolutional
neural networks. In Leibe, B., Matas, J., Sebe, N., and
Welling, M., editors, ECCV, volume 9911 of Lecture
Notes in CS, pages 467–482. Springer.
Simonyan, K. and Zisserman, A. (2015). Very deep convo-
lutional networks for large-scale image recognition. In
Bengio, Y. and LeCun, Y., editors, ICLR, San Diego,
CA, USA.
Singh, N. D. and Dhall, A. (2018). Clustering and learning
from imbalanced data. ArXiv, abs/1811.00972.
Smith, L. N. (2017). Cyclical learning rates for training
neural networks. In WACV, pages 464–472. IEEE.
Sowah, R. A., Agebure, M. A., Mills, G. A., Koumadi,
K. M., and Fiawoo, S. Y. (2016). New cluster under-
sampling technique for class imbalance learning. Int
Journal of Mach Learning and Computing, 6(3):205.
Thapa, R., Zhang, K., Snavely, N., Belongie, S., and Khan,
A. (2020). The plant pathology challenge 2020 data
set to classify foliar disease of apples. Appl in Plant
Sciences, 8(9):e11390.
Tsai, C.-F., Lin, W.-C., Hu, Y.-H., and Yao, G.-T. (2019).
Under-sampling class imbalanced datasets by combin-
ing clustering analysis and instance selection. Infor-
mation Sciences, 477:47–54.
Wang, Y., Gan, W., Yang, J., Wu, W., and Yan, J. (2019).
Dynamic curriculum learning for imbalanced data
classification. In ICCV, pages 5016–5025, Seoul,
South Korea. IEEE.
Wei, D., Zhou, B., Torrabla, A., and Freeman, W. (2015).
Understanding intra-class knowledge inside CNN.
ArXiv, abs/1507.02379.
Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. (2015).
Learning from massive noisy labeled data for image
classification. In CVPR, pages 2691–2699, Boston,
MA, USA. IEEE.
Yen, S.-J. and Lee, Y.-S. (2009). Cluster-based under-
sampling approaches for imbalanced data distribu-
tions. Expert Systems with Applications, 36(3):5718–
5727.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and un-
derstanding convolutional networks. In Fleet, D., Pa-
jdla, T., Schiele, B., and Tuytelaars, T., editors, ECCV,
number PART 1 in Lecture Notes in CS, pages 818–
833, Zurich, CH. Springer.
Zhang, J. and Mani, I. (2003). kNN approach to unbalanced
data distributions: A case study involving information
extraction. In Proc ICML Workshop on Learning from
Imbalanced Datasets, volume 126.
Zhang, Y., Shuai, L., Ren, Y., and Chen, H. (2018). Image
classification with category centers in class imbalance
situation. In YAC, pages 359–363.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
500