Chang, X., Wu, J., Yang, T., and Feng, G. (2020). Deepfake
face image detection based on improved vgg convolu-
tional neural network. In 2020 39th Chinese Control
Conference (CCC), pages 7252–7256.
Chen, M., Shi, X., Zhang, Y., Wu, D., and Guizani, M.
(2017). Deep features learning for medical image
analysis with convolutional autoencoder neural net-
work. IEEE Transactions on Big Data, pages 1–1.
Garcia, F. C. C., Creayla, C. M. C., and Macabebe, E.
Q. B. (2017). Development of an intelligent system
for smart home energy disaggregation using stacked
denoising autoencoders. Procedia Computer Science,
105:248–255. 2016 IEEE International Symposium
on Robotics and Intelligent Sensors, IRIS 2016, 17-
20 December 2016, Tokyo, Japan.
Guo, Z., Yang, G., Chen, J., and Sun, X. (2020). Fake
face detection via adaptive residuals extraction net-
work. CoRR, abs/2005.04945.
Han, B., Han, X., Zhang, H., Li, J., and Cao, X. (2021).
Fighting fake news: Two stream network for deep-
fake detection via learnable srm. IEEE Transactions
on Biometrics, Behavior, and Identity Science, pages
1–1.
Kang, S., Park, H., and Park, J.-I. (2019). Cnn-based
ternary classification for image steganalysis. Electron-
ics, 8(11).
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunning-
ham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J.,
Wang, Z., and Shi, W. (2017). Photo-realistic single
image super-resolution using a generative adversarial
network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Li, Y., Yang, X., Sun, P., Qi, H., and Lyu, S. (2019). Celeb-
df: A new dataset for deepfake forensics. CoRR,
abs/1909.12962.
Liu, Z., Qi, X., Jia, J., and Torr, P. H. S. (2020). Global tex-
ture enhancement for fake face detection in the wild.
CoRR, abs/2002.00133.
Mirsky, Y. and Lee, W. (2021). The creation and detection
of deepfakes: A survey. ACM Comput. Surv., 54(1).
Rana, M. S. and Sung, A. H. (2020). Deepfakestack:
A deep ensemble-based learning technique for deep-
fake detection. In 2020 7th IEEE International Con-
ference on Cyber Security and Cloud Computing
(CSCloud)/2020 6th IEEE International Conference
on Edge Computing and Scalable Cloud (EdgeCom),
pages 70–75.
Reinel, T.-S., Brayan, A.-A. H., Alejandro, B.-O. M., Ale-
jandro, M.-R., Daniel, A.-G., Alejandro, A.-G. J.,
Buenaventura, B.-J. A., Simon, O.-A., Gustavo, I.,
and Ra
´
ul, R.-P. (2021). Gbras-net: A convolutional
neural network architecture for spatial image steganal-
ysis. IEEE Access, 9:14340–14350.
Sarwas, G. and Skoneczny, S. (2019). Half profile face im-
age clustering based on feature points. In Chora
´
s,
M. and Chora
´
s, R. S., editors, Image Processing
and Communications Challenges 10, pages 140–147.
Springer International Publishing.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions.
Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J.,
Li, Z., and Liu, W. (2018). Cosface: Large margin co-
sine loss for deep face recognition. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 5265–5274.
Yi, X., Walia, E., and Babyn, P. (2019). Generative adver-
sarial network in medical imaging: A review. Medical
Image Analysis, 58:101552.
Younus, M. A. and Hasan, T. M. (2020). Effective and
fast deepfake detection method based on haar wavelet
transform. In 2020 International Conference on Com-
puter Science and Software Engineering (CSASE),
pages 186–190.
Zhang, R., Zhu, F., Liu, J., and Liu, G. (2018). Efficient fea-
ture learning and multi-size image steganalysis based
on cnn. ArXiv, abs/1807.11428.
Zhou, P., Han, X., Morariu, V. I., and Davis, L. S. (2018).
Learning rich features for image manipulation detec-
tion. In 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1053–1061.
Zi, B., Chang, M., Chen, J., Ma, X., and Jiang, Y.-G. (2021).
Wilddeepfake: A challenging real-world dataset for
deepfake detection.
Image Prefiltering in DeepFake Detection
483