Dai, A., Nießner, M., Zollh
¨
ofer, M., Izadi, S., and Theobalt,
C. (2017b). Bundlefusion: Real-time globally consis-
tent 3d reconstruction using on-the-fly surface reinte-
gration. ACM Transactions on Graphics, 36(4).
Floros, G. and Leibe, B. (2012). Joint 2d-3d temporally
consistent semantic segmentation of street scenes. In
Conference on Computer Vision and Pattern Recogni-
tion.
Gadde, R., Jampani, V., and Gehler, P. V. (2017). Semantic
video cnns through representation warping. In Inter-
national Conference on Computer Vision.
Glassner, A. S. (1989). An introduction to ray tracing. Mor-
gan Kaufmann.
Grinvald, M., Furrer, F., Novkovic, T., Chung, J. J., Cadena,
C., Siegwart, R., and Nieto, J. (2019). Volumetric
instance-aware semantic mapping and 3d object dis-
covery. Robotics and Automation Letters, 4(3).
Heckbert, P. S. (1989). Fundamentals of texture mapping
and image warping.
Hermans, A., Floros, G., and Leibe, B. (2014). Dense 3d se-
mantic mapping of indoor scenes from rgb-d images.
In International Conference on Robotics and Automa-
tion.
Jeon, J., Jung, J., Kim, J., and Lee, S. (2018). Semantic
reconstruction: Reconstruction of semantically seg-
mented 3d meshes via volumetric semantic fusion. In
Computer Graphics Forum, volume 37.
Kundu, A., Li, Y., Dellaert, F., Li, F., and Rehg, J. M.
(2014). Joint semantic segmentation and 3d recon-
struction from monocular video. In European Confer-
ence on Computer Vision.
Labatut, P., Pons, J.-P., and Keriven, R. (2009). Robust and
efficient surface reconstruction from range data. In
Computer Graphics Forum, volume 28.
Li, X., Ao, H., Belaroussi, R., and Gruyer, D. (2017). Fast
semi-dense 3d semantic mapping with monocular vi-
sual slam. In International Conference on Intelligent
Transportation Systems.
Li, X. and Belaroussi, R. (2016). Semi-dense 3d seman-
tic mapping from monocular slam. arXiv preprint
arXiv:1611.04144.
Ma, L., St
¨
uckler, J., Kerl, C., and Cremers, D. (2017).
Multi-view deep learning for consistent semantic
mapping with rgb-d cameras. In International Con-
ference on Intelligent Robots and Systems.
McCormac, J., Handa, A., Davison, A., and Leutenegger, S.
(2017). Semanticfusion: Dense 3d semantic mapping
with convolutional neural networks. In International
Conference on Robotics and Automation.
Mustikovela, S. K., Yang, M. Y., and Rother, C. (2016).
Can ground truth label propagation from video help
semantic segmentation? In European Conference on
Computer Vision.
Nathan Silberman, Derek Hoiem, P. K. and Fergus, R.
(2012). Indoor segmentation and support inference
from rgbd images. In European Conference on Com-
puter Vision.
Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008).
Scalable parallel programming with cuda: Is cuda the
parallel programming model that application develop-
ers have been waiting for? Queue, 6(2).
Nilsson, D. and Sminchisescu, C. (2018). Semantic video
segmentation by gated recurrent flow propagation. In
Conference on Computer Vision and Pattern Recogni-
tion.
Pham, Q.-H., Hua, B.-S., Nguyen, T., and Yeung, S.-K.
(2019). Real-time progressive 3d semantic segmen-
tation for indoor scenes. In Winter Conference on Ap-
plications of Computer Vision.
Rosinol, A., Abate, M., Chang, Y., and Carlone, L. (2020).
Kimera: an open-source library for real-time metric-
semantic localization and mapping. In International
Conference on Robotics and Automation.
Rosu, R. A., Quenzel, J., and Behnke, S. (2020). Semi-
supervised semantic mapping through label propaga-
tion with semantic texture meshes. International Jour-
nal of Computer Vision, 128(5).
Sch
¨
onberger, J. L. and Frahm, J.-M. (2016). Structure-
from-motion revisited. In Conference on Computer
Vision and Pattern Recognition.
Sch
¨
onberger, J. L., Zheng, E., Frahm, J.-M., and Pollefeys,
M. (2016a). Pixelwise view selection for unstructured
multi-view stereo. In European Conference on Com-
puter Vision.
Sch
¨
onberger, J. L., Zheng, E., Pollefeys, M., and Frahm,
J.-M. (2016b). Pixelwise view selection for unstruc-
tured multi-view stereo. In European Conference on
Computer Vision.
Seichter, D., K
¨
ohler, M., Lewandowski, B., Wengefeld, T.,
and Gross, H. (2020). Efficient RGB-D semantic seg-
mentation for indoor scene analysis. Computing Re-
search Repository, abs/2011.06961.
Stekovic, S., Fraundorfer, F., and Lepetit, V. (2020). Cast-
ing geometric constraints in semantic segmentation as
semi-supervised learning. In Winter Conference on
Applications of Computer Vision.
St
¨
uckler, J., Waldvogel, B., Schulz, H., and Behnke, S.
(2015). Dense real-time mapping of object-class se-
mantics from rgb-d video. Journal of Real-Time Im-
age Processing, 10(4).
Tateno, K., Tombari, F., Laina, I., and Navab, N. (2017).
Cnn-slam: Real-time dense monocular slam with
learned depth prediction. In Conference on Computer
Vision and Pattern Recognition.
Woo, M., Neider, J., Davis, T., and Shreiner, D. (1999).
OpenGL programming guide: the official guide to
learning OpenGL, version 1.2. Addison-Wesley
Longman Publishing Co., Inc.
Zhu, Y., Sapra, K., Reda, F. A., Shih, K. J., Newsam, S.,
Tao, A., and Catanzaro, B. (2019). Improving seman-
tic segmentation via video propagation and label re-
laxation. In Conference on Computer Vision and Pat-
tern Recognition.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
516