Derrac, J., Garc
´
ıa, S., and Herrera, F. (2010). A survey
on evolutionary instance selection and generation. In-
ternational Journal of Applied Metaheuristic Comput-
ing, 1(1):60–92.
Dorigo, M. and Di Caro, G. (1999). Ant colony optimiza-
tion: a new meta-heuristic. In Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat.
No. 99TH8406), volume 2, pages 1470–1477.
Dorigo, M. and St
¨
utzle, T. (2004). Ant Colony Optimiza-
tion. Bradford Company, USA.
Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A. G.,
Parizeau, M., and Gagn
´
e, C. (2012). DEAP: Evolu-
tionary algorithms made easy. Journal of Machine
Learning Research, 13(1):2171–2175.
Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012).
Prototype selection for nearest neighbor classifica-
tion: Taxonomy and empirical study. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(3):417–435.
Garcia, S., Luengo, J., and Herrera, F. (2014). Data Pre-
processing in Data Mining. Springer Publishing Com-
pany, Incorporated.
Jennum, P., Hastrup, L. H., Ibsen, R., Kjellberg, J., and Si-
monsen, E. (2020). Welfare consequences for people
diagnosed with attention deficit hyperactivity disorder
(ADHD): A matched nationwide study in denmark.
European Neuropsychopharmacology, 37:29–38.
Li, R. (2019). Adaptive learning model based on ant colony
algorithm. International Journal of Emerging Tech-
nologies in Learning, 14(1):49–57.
Liu, H. and Motoda, H. (2001). Instance Selection and Con-
struction for Data Mining. Kluwer Academic Publish-
ers, USA.
Maia, G. B. C. and Batista, K. G. S. (2021). Avaliac¸
˜
ao
neuropsicol
´
ogica das func¸
˜
oes executivas e da
atenc¸
˜
ao em crianc¸as com transtorno do d
´
eficit de
atenc¸
˜
ao/hiperatividade - TDAH. Humanas em
Perspectiva, 3:41–61.
Mattos, P. (2015). No mundo da lua: perguntas e respostas
sobre transtorno do d
´
efict de atenc¸
˜
ao com hiperativi-
dade em crianc¸as, adolescentes e adultos. Associac¸
˜
ao
Brasileira do D
´
efict de Atenc¸
˜
ao.
Miloud-Aouidate, A. and Baba-Ali, A. (2015). An effi-
cient ant colony instance selection algorithm for KNN
classification. International Journal of Applied Meta-
heuristic Computing, 4:47–64.
Moreira, S. C. and Barreto, M. A. M. (2017). Transtorno de
d
´
eficit de atenc¸
˜
ao e hiperatividade: conhecendo para
intervir. Revista Pr
´
axis, 1(2):65–70.
Muzetti, C. M. G. and de Luca Vinhas, M. C. Z. (2017).
Influ
ˆ
encia do d
´
eficit de atenc¸
˜
ao e hiperatividade na
aprendizagem em escolares. Psicologia argumento,
29(65):237–248.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Pyle, D. (1999). Data Preparation for Data Mining. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition.
Rangel J
´
unior,
´
E. d. B. and Loos, H. (2011). Escola e
desenvolvimento psicossocial segundo percepc¸
˜
oes de
jovens com TDAH. Paid
´
eia, 21(50):373–382.
Retz, W., Ginsberg, Y., Turner, D., Barra, S., Retz-
Junginger, P., Larsson, H., and Asherson, P. (2020).
Attention-deficit/hyperactivity disorder (ADHD), an-
tisociality and delinquent behavior over the lifespan.
Neuroscience & Biobehavioral Reviews, 120:236–
248.
Salama, K. M., Abdelbar, A. M., and Anwar, I. M. (2016).
Data reduction for classification with ant colony algo-
rithms. Intelligent Data Analysis, 20:1021–1059. 5.
Santos, L. d. F. and Vasconcelos, L. A. (2010). Transtorno
do d
´
eficit de atenc¸
˜
ao e hiperatividade em crianc¸as:
uma revis
˜
ao interdisciplinar. Psicologia: Teoria e
Pesquisa, 26(4):717–724.
Selcuk, T. and Alkan, A. (2019). Detection of microa-
neurysms using ant colony algorithm in the early di-
agnosis of diabetic retinopathy. Medical hypotheses,
129:109242.
HEALTHINF 2022 - 15th International Conference on Health Informatics
110