Liu, W., Chen, C., Kwan-Yee K. Wong, Z. S., and Han, J.
(2016). STAR-Net: A spatial attention residue net-
work for scene text recognition. In British Machine
Vision Conference (BMVC), pages 1–13.
Lubna, Mufti, N., and Shah, S. A. A. (2021). Automatic
number plate Recognition: A detailed survey of rele-
vant algorithms. Sensors, 21(9):3028.
Masood, S. Z. et al. (2017). License plate detection and
recognition using deeply learned convolutional neural
networks. arXiv preprint, arXiv:1703.07330.
Meng, S., Zhang, Z., and Wan, Y. (2020). Accelerating au-
tomatic license plate detection in the wild. In IEEE
Joint International Information Technology and Arti-
ficial Intelligence Conference, pages 742–746.
Oliveira, I. O. et al. (2021). Vehicle-Rear: A new dataset
to explore feature fusion for vehicle identification us-
ing convolutional neural networks. IEEE Access,
9:101065–101077.
OpenALPR API (2021). http://www.openalpr.com/.
OpenALPR Inc. (2016). OpenALPR-EU dataset.
https://github.com/openalpr/benchmarks/tree/master/
endtoend/eu.
Panahi, R. and Gholampour, I. (2017). Accurate detec-
tion and recognition of dirty vehicle plate numbers for
high-speed applications. IEEE Transactions on Intel-
ligent Transportation Systems, 18(4):767–779.
Presid
ˆ
encia da Rep
´
ublica (1997). LEI N
o
9.503, DE
23 DE SETEMBRO DE 1997 - C
´
odigo de Tr
ˆ
ansito
Brasileiro. http://www.planalto.gov.br/ccivil 03/leis/
l9503compilado.htm.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 779–788.
RodoSol (2021). Concession
´
aria Rodovia do Sol
S/A. https://www.rodosol.com.br/blog/conheca-a-
rodosol-2. Accessed: 2021-09-10.
Selmi, Z., Halima, M. B., Pal, U., and Alimi, M. A. (2020).
DELP-DAR system for license plate detection and
recognition. Pattern Recog. Letters, 129:213–223.
Shi, B., Bai, X., and Yao, C. (2017). An end-to-end train-
able neural network for image-based sequence recog-
nition and its application to scene text recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(11):2298–2304.
Shi, B., Wang, X., Lyu, P., Yao, C., and Bai, X. (2016).
Robust scene text recognition with automatic rectifi-
cation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4168–4176.
Silva, S. M. and Jung, C. R. (2020). Real-time license
plate detection and recognition using deep convolu-
tional neural networks. Journal of Visual Communi-
cation and Image Representation, page 102773.
Silva, S. M. and Jung, C. R. (2021). A flexible approach for
automatic license plate recognition in unconstrained
scenarios. IEEE Transactions on Intelligent Trans-
portation Systems, pages 1–11.
Silvano, G. et al. (2020). Synthetic image generation for
training deep learning-based automated license plate
recognition systems on the Brazilian Mercosur stan-
dard. Design Automation for Embedded Systems,
pages 1–21.
ˇ
Spa
ˇ
nhel, J. et al. (2017). Holistic recognition of low qual-
ity license plates by CNN using track annotated data.
In IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pages 1–6.
Srebri
´
c, V. (2003). EnglishLP database. http://www.zemris.
fer.hr/projects/LicensePlates/english/baza
slika.zip.
Statista (2021). Projected worldwide light ve-
hicle sales growth from 2019 to 2023.
https://www.statista.com/statistics/267128/outlook-
on-worldwide-passenger-car-sales/.
Tommasi, T., Patricia, N., Caputo, B., and Tuytelaars, T.
(2017). A deeper look at dataset bias. In Domain
Adaptation in Computer Vision Applications, pages
37–55. Springer.
Torralba, A. and Efros, A. A. (2011). Unbiased look at
dataset bias. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1521–1528.
Wang, J. and Hu, X. (2017). Gated recurrent convolution
neural network for OCR. In Annual Conference on
Neural Information Processing Systems (NeurIPS).
Wang, Y., Bian, Z.-P., Zhou, Y., and Chau, L.-P. (2021). Re-
thinking and designing a high-performing automatic
license plate recognition approach. IEEE Trans. on
Intelligent Transportation Systems, pages 1–13.
Weber, M. (1999). Caltech Cars dataset.
http://www.vision.caltech.edu/Image Datasets/
cars markus/cars markus.tar.
Weihong, W. and Jiaoyang, T. (2020). Research on license
plate recognition algorithms based on deep learning in
complex environment. IEEE Access, 8:91661–91675.
Xiang, H., Zhao, Y., Yuan, Y., Zhang, G., and Hu, X.
(2019). Lightweight fully convolutional network for
license plate detection. Optik, 178:1185–1194.
Xie, L., Ahmad, T., Jin, L., Liu, Y., and Zhang, S. (2018).
A new CNN-based method for multi-directional car
license plate detection. IEEE Transactions on Intelli-
gent Transportation Systems, 19(2):507–517.
Xu, Z. et al. (2018). Towards end-to-end license plate detec-
tion and recognition: A large dataset and baseline. In
European Conf. on Computer Vision, pages 261–277.
Zhang, J., Li, W., Ogunbona, P., and Xu, D. (2019). Recent
advances in transfer learning for cross-dataset visual
recognition: A problem-oriented perspective. ACM
Computing Surveys, 52(1):1–38.
Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., and Zhang,
Y. (2020). A robust attentional framework for license
plate recognition in the wild. IEEE Transactions on
Intelligent Transportation Systems, pages 1–10.
Zhou, W., Li, H., Lu, Y., and Tian, Q. (2012). Princi-
pal visual word discovery for automatic license plate
detection. IEEE Transactions on Image Processing,
21(9):4269–4279.
Zou, Y., Zhang, Y., Yan, J., Jiang, X., Huang, T., Fan, H.,
and Cui, Z. (2020). A robust license plate recognition
model based on bi-LSTM. IEEE Access, 8:211630.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
178