plain radiographs in a PACS using a neural network.
European Radiology, 31(4):1812–1818.
Gyawali, P. K., Li, Z., Ghimire, S., and Wang, L. (2019).
Semi-supervised learning by disentangling and self-
ensembling over stochastic latent space. In Inter-
national Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 766–774.
Springer.
Hou, D., Zhao, Z., and Hu, S. (2021). Multi-label learn-
ing with visual-semantic embedded knowledge graph
for diagnosis of radiology imaging. IEEE Access,
9:15720–15730.
Howard, J. and Gugger, S. (2020). Fastai: A layered API
for deep learning. Information, 11(2):108.
Howard, J. and Ruder, S. (2018). Universal language model
fine-tuning for text classification. arXiv preprint
arXiv:1801.06146.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.
Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S.,
Chute, C., Marklund, H., Haghgoo, B., Ball, R., and
Shpanskaya, K. (2019). Chexpert: A large chest radio-
graph dataset with uncertainty labels and expert com-
parison. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 590–597.
Johnson, A. E. W., Pollard, T. J., Berkowitz, S. J., Green-
baum, N. R., Lungren, M. P., Deng, C.-y., Mark, R. G.,
and Horng, S. (2019a). MIMIC-CXR, a de-identified
publicly available database of chest radiographs with
free-text reports. Scientific data, 6(1):1–8.
Johnson, A. E. W., Pollard, T. J., Greenbaum, N. R.,
Lungren, M. P., Deng, C.-y., Peng, Y., Lu, Z.,
Mark, R. G., Berkowitz, S. J., and Horng, S.
(2019b). MIMIC-CXR-JPG, a large publicly available
database of labeled chest radiographs. arXiv preprint
arXiv:1901.07042.
Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li,
T., Paszke, A., Smith, J., Vaughan, B., and Damania,
P. (2020). PyTorch Distributed: Experiences on Ac-
celerating Data Parallel Training. Proceedings of the
VLDB Endowment, 13(12).
Mo, S. and Cai, M. (2019). Deep learning based multi-
label chest x-ray classification with entropy weight-
ing loss. In 2019 12th International Symposium on
Computational Intelligence and Design (ISCID), vol-
ume 2, pages 124–127. IEEE.
Monshi, M. M. A., Poon, J., and Chung, V. (2019). Convo-
lutional neural network to detect thorax diseases from
multi-view chest x-rays. In International Conference
on Neural Information Processing, pages 148–158.
Springer.
Monshi, M. M. A., Poon, J., Chung, V., and Monshi,
F. M. (2021). CovidXrayNet: Optimizing Data Aug-
mentation and CNN Hyperparameters for Improved
COVID-19 Detection from CXR. Computers in Bi-
ology and Medicine, 133(0010-4825):104375.
NVIDIA (2018). DGX-2 : AI Servers for Solving Complex
AI Challenges — NVIDIA.
NVIDIA (2020). NVIDIA DGX A100 System Architec-
ture.
Peng, Y., Wang, X., Lu, L., Bagheri, M., Summers, R.,
and Lu, Z. (2018). Negbio: a high-performance tool
for negation and uncertainty detection in radiology re-
ports. AMIA Summits on Translational Science Pro-
ceedings, 2018:188.
Pham, H. H., Le, T. T., Tran, D. Q., Ngo, D. T., and Nguyen,
H. Q. (2021). Interpreting chest X-rays via CNNs that
exploit hierarchical disease dependencies and uncer-
tainty labels. Neurocomputing, 437:186–194.
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan,
T., Ding, D., Bagul, A., Langlotz, C., and Shpan-
skaya, K. (2017). Chexnet: Radiologist-level pneu-
monia detection on chest x-rays with deep learning.
arXiv preprint arXiv:1711.05225.
Sabottke, C. F. and Spieler, B. M. (2020). The effect of
image resolution on deep learning in radiography. Ra-
diology: Artificial Intelligence, 2(1):e190015.
Sahu, B. K. and Verma, R. (2011). DICOM search in medi-
cal image archive solution e-Sushrut Chhavi. In 2011
3rd International Conference on Electronics Com-
puter Technology, volume 6, pages 256–260. IEEE.
Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I. Y.,
and Ghassemi, M. (2020). CheXclusion: Fairness
gaps in deep chest X-ray classifiers. In BIOCOM-
PUTING 2021: Proceedings of the Pacific Sympo-
sium, pages 232–243. World Scientific.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Smith, L. N. (2018). A disciplined approach to neural net-
work hyper-parameters: Part 1–learning rate, batch
size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820.
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Sum-
mers, R. M. (2017). Chestx-ray8: Hospital-scale chest
x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax dis-
eases. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2097–
2106.
Wang, X., Peng, Y., Lu, L., Lu, Z., and Summers, R. M.
(2018). Tienet: Text-image embedding network for
common thorax disease classification and reporting in
chest x-rays. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
9049–9058.
Wightman, R. (2021). Pytorch image models. https:
//github.com/rwightman/pytorch-image-models.
Yao, L., Poblenz, E., Dagunts, D., Covington, B., Bernard,
D., and Lyman, K. (2017). Learning to diagnose
from scratch by exploiting dependencies among la-
bels. arXiv preprint arXiv:1710.10501.
Yarnall, J. (2020). X-Ray Classification Using Deep Learn-
ing and the MIMIC-CXR Dataset.
Zhang, R. (2019). Making convolutional networks shift-
invariant again. In International conference on ma-
chine learning, pages 7324–7334. PMLR.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
956