approach’,  Public Choice,  112(1),  pp.  167–184.  doi: 
10.1023/A:1015609200117. 
Hamza,  M.  and  Larocque,  D.  (2005)  ‘An  empirical 
comparison  of  ensemble  methods  based  on 
classification trees’, Journal of Statistical Computation 
and Simulation,  75(8),  pp.  629–643.  doi:  10.1080/ 
00949650410001729472. 
He,  K.  and  Sun,  J.  (2016)  ‘Deep  Residual  Learning  for 
Image Recognition’. doi: 10.1109/CVPR.2016.90. 
Hosni, M. et al. (2019) ‘Reviewing ensemble classification 
methods  in  breast  cancer’,  Computer Methods and 
Programs in Biomedicine,  177,  pp.  89–112.  doi: 
10.1016/j.cmpb.2019.05.019. 
Huang, G. et al. (2017) ‘Densely Connected Convolutional 
Networks’. doi: 10.1109/CVPR.2017.243. 
Idri, A. et al. (2020) ‘Assessing the impact of parameters 
tuning in ensemble based breast Cancer classification’, 
Health and Technology. Health and Technology, 10(5), 
pp. 1239–1255. doi: 10.1007/s12553-020-00453-2. 
Idri, A. and Abnane, I. (2017) ‘Fuzzy Analogy Based Effort 
Estimation:  An  Empirical  Comparative  Study’,  IEEE 
CIT 2017 - 17th IEEE International Conference on 
Computer and Information Technology, (Ml), pp. 114–
121. doi: 10.1109/CIT.2017.29. 
Idri,  A.,  Abnane,  I.  and  Abran,  A.  (2018)  ‘Evaluating 
Pred(p) and standardized accuracy criteria in software 
development  effort  estimation’,  Journal of Software: 
Evolution and Process, 30(4), pp. 1–15. doi: 10.1002/ 
smr.1925. 
Idri,  A.,  Hosni,  M.  and  Abran,  A.  (2016)  ‘Improved 
estimation  of  software  development  effort  using 
Classical and Fuzzy Analogy ensembles’, Applied Soft 
Computing Journal. Elsevier B.V., 49, pp. 990–1019. 
doi: 10.1016/j.asoc.2016.08.012. 
Jiang,  Y.  et al.  (2019)  ‘Breast  cancer  histopathological 
image  classification  using  convolutional  neural 
networks with small SE-ResNet module’, PLoS ONE, 
14(3), pp. 1–21. doi: 10.1371/journal.pone.0214587. 
Jolliffe,  I.  T.,  Allen,  O.  B.  and  Christie,  B.  R.  (1989) 
‘COMPARISON  OF  VARIETY  MEANS  USING 
advantage  of  this  approach  is  that  the  divisions  into 
groups can be done at more’, 25, pp. 259–269. 
K, H. T. (2013) ‘c r v i h o e f c r v i h o e f’, 4(2), pp. 627–
635. 
Kassani,  S.  H.  et al.  (2019)  ‘Classification  of 
Histopathological  Biopsy  Images  Using  Ensemble  of 
Deep  Learning  Networks’.  Available  at:  http:// 
arxiv.org/abs/1909.11870. 
Kharel, N. et al. (2017) ‘Early diagnosis of  breast  cancer 
using contrast limited adaptive histogram equalization 
(CLAHE)  and  Morphology  methods’,  2017 8th 
International Conference on Information and 
Communication Systems, ICICS 2017,  pp.  120–124. 
doi: 10.1109/IACS.2017.7921957. 
Kingma, D. P. and Ba, J. L. (2015) ‘Adam: A method for 
stochastic optimization’, 3rd International Conference 
on Learning Representations, ICLR 2015 - Conference 
Track Proceedings, pp. 1–15. 
Makandar, A. and Halalli, B. (2015) ‘Breast Cancer Image 
Enhancement  using  Median  Filter  and  CLAHE’, 
International Journal of Scientific & Engineering 
Research,  6(4),  pp.  462–465.  Available  at:  http:// 
www.ijser.org. 
Mendelson, E. B. and Eb, M. (2019) ‘Imaging : Potentials 
and Limitations’, American Journal of Roentgenology, 
(February), pp. 1–7. doi: 10.2214/AJR.18.20532. 
Metelko,  Z.  et al.  (1995)  ‘Pergamon  THE  WORLD 
HEALTH  ORGANIZATION  QUALITY  OF  LIFE 
ASSESSMENT  (  WHOQOL  ):  POSITION  PAPER 
FROM THE WORLD HEALTH  ORGANIZATION’, 
41(10). 
Mittas, N. and Angelis, L. (2013) ‘Ranking and clustering 
software  cost  estimation  models  through  a  multiple 
comparisons  algorithm’,  IEEE Transactions on 
Software Engineering,  39(4),  pp.  537–551.  doi: 
10.1109/TSE.2012.45. 
Nahid,  A.  Al,  Mehrabi,  M.  A.  and  Kong,  Y.  (2018) 
‘Histopathological  breast  cancer  image  classification 
by  deep  neural  network  techniques  guided  by  local 
clustering’, BioMed Research International, 2018. doi: 
10.1155/2018/2362108. 
Ottoni,  A.  L.  C.  et al.  (2020)  ‘Tuning  of  reinforcement 
learning  parameters  applied  to  SOP  using  the  Scott–
Knott  method’,  Soft Computing.  Springer  Berlin 
Heidelberg,  24(6),  pp.  4441–4453.  doi:  10.1007/ 
s00500-019-04206-w. 
Perez, L. and Wang, J. (2017) ‘The Effectiveness of Data 
Augmentation  in  Image  Classification  using  Deep 
Learning’.  Available  at:  http://arxiv.org/abs/ 
1712.04621. 
Razzak,  M.  I.,  Naz,  S.  and  Zaib,  A.  (no  date)  ‘Deep 
Learning  for  Medical  Image  Processing :  Overview  , 
Challenges and the Future’. 
Sadoughi, F. et al. (2018) ‘Artificial intelligence methods 
for the diagnosis of breast cancer by image processing: 
A  review’,  Breast Cancer: Targets and Therapy,  10, 
pp. 219–230. doi: 10.2147/BCTT.S175311. 
Sagi,  O.  and  Rokach,  L.  (2018)  ‘Ensemble  learning:  A 
survey’, Wiley Interdisciplinary Reviews: Data Mining 
and Knowledge Discovery,  8(4),  pp.  1–18.  doi: 
10.1002/widm.1249. 
Saha,  M.,  Mukherjee,  R.  and  Chakraborty,  C.  (2016) 
‘Computer-aided  diagnosis  of  breast  cancer  using 
cytological images: A systematic review’,  Tissue and 
Cell.  Elsevier  Ltd,  48(5),  pp.  461–474.  doi: 
10.1016/j.tice.2016.07.006. 
Saikia,  A.  R.  et al.  (2019)  ‘Comparative  assessment  of 
CNN  architectures  for  classification  of  breast  FNAC 
images’,  Tissue and Cell.  Elsevier  Ltd,  57,  pp.  8–14. 
doi: 10.1016/j.tice.2019.02.001. 
Sakia,  A.  R.  M.  (2012)  ‘The  Box-Cox  transformation 
technique : a review’, 41(2), pp. 169–178. 
Sandler, M. et al. (2018) ‘MobileNetV2: Inverted Residuals 
and  Linear  Bottlenecks’,  Proceedings of the IEEE 
Computer Society Conference on Computer Vision and 
Pattern Recognition.  IEEE,  pp.  4510–4520.  doi: 
10.1109/CVPR.2018.00474. 
SHARMA,  J.  et al.  (2003)  ‘Symbiotic  Seed  Germination 
and  Mycorrhizae  of  Federally  Threatened  Platanthera 
praeclara  (Orchidaceae)’,  The American Midland