approach’, Public Choice, 112(1), pp. 167–184. doi:
10.1023/A:1015609200117.
Hamza, M. and Larocque, D. (2005) ‘An empirical
comparison of ensemble methods based on
classification trees’, Journal of Statistical Computation
and Simulation, 75(8), pp. 629–643. doi: 10.1080/
00949650410001729472.
He, K. and Sun, J. (2016) ‘Deep Residual Learning for
Image Recognition’. doi: 10.1109/CVPR.2016.90.
Hosni, M. et al. (2019) ‘Reviewing ensemble classification
methods in breast cancer’, Computer Methods and
Programs in Biomedicine, 177, pp. 89–112. doi:
10.1016/j.cmpb.2019.05.019.
Huang, G. et al. (2017) ‘Densely Connected Convolutional
Networks’. doi: 10.1109/CVPR.2017.243.
Idri, A. et al. (2020) ‘Assessing the impact of parameters
tuning in ensemble based breast Cancer classification’,
Health and Technology. Health and Technology, 10(5),
pp. 1239–1255. doi: 10.1007/s12553-020-00453-2.
Idri, A. and Abnane, I. (2017) ‘Fuzzy Analogy Based Effort
Estimation: An Empirical Comparative Study’, IEEE
CIT 2017 - 17th IEEE International Conference on
Computer and Information Technology, (Ml), pp. 114–
121. doi: 10.1109/CIT.2017.29.
Idri, A., Abnane, I. and Abran, A. (2018) ‘Evaluating
Pred(p) and standardized accuracy criteria in software
development effort estimation’, Journal of Software:
Evolution and Process, 30(4), pp. 1–15. doi: 10.1002/
smr.1925.
Idri, A., Hosni, M. and Abran, A. (2016) ‘Improved
estimation of software development effort using
Classical and Fuzzy Analogy ensembles’, Applied Soft
Computing Journal. Elsevier B.V., 49, pp. 990–1019.
doi: 10.1016/j.asoc.2016.08.012.
Jiang, Y. et al. (2019) ‘Breast cancer histopathological
image classification using convolutional neural
networks with small SE-ResNet module’, PLoS ONE,
14(3), pp. 1–21. doi: 10.1371/journal.pone.0214587.
Jolliffe, I. T., Allen, O. B. and Christie, B. R. (1989)
‘COMPARISON OF VARIETY MEANS USING
advantage of this approach is that the divisions into
groups can be done at more’, 25, pp. 259–269.
K, H. T. (2013) ‘c r v i h o e f c r v i h o e f’, 4(2), pp. 627–
635.
Kassani, S. H. et al. (2019) ‘Classification of
Histopathological Biopsy Images Using Ensemble of
Deep Learning Networks’. Available at: http://
arxiv.org/abs/1909.11870.
Kharel, N. et al. (2017) ‘Early diagnosis of breast cancer
using contrast limited adaptive histogram equalization
(CLAHE) and Morphology methods’, 2017 8th
International Conference on Information and
Communication Systems, ICICS 2017, pp. 120–124.
doi: 10.1109/IACS.2017.7921957.
Kingma, D. P. and Ba, J. L. (2015) ‘Adam: A method for
stochastic optimization’, 3rd International Conference
on Learning Representations, ICLR 2015 - Conference
Track Proceedings, pp. 1–15.
Makandar, A. and Halalli, B. (2015) ‘Breast Cancer Image
Enhancement using Median Filter and CLAHE’,
International Journal of Scientific & Engineering
Research, 6(4), pp. 462–465. Available at: http://
www.ijser.org.
Mendelson, E. B. and Eb, M. (2019) ‘Imaging : Potentials
and Limitations’, American Journal of Roentgenology,
(February), pp. 1–7. doi: 10.2214/AJR.18.20532.
Metelko, Z. et al. (1995) ‘Pergamon THE WORLD
HEALTH ORGANIZATION QUALITY OF LIFE
ASSESSMENT ( WHOQOL ): POSITION PAPER
FROM THE WORLD HEALTH ORGANIZATION’,
41(10).
Mittas, N. and Angelis, L. (2013) ‘Ranking and clustering
software cost estimation models through a multiple
comparisons algorithm’, IEEE Transactions on
Software Engineering, 39(4), pp. 537–551. doi:
10.1109/TSE.2012.45.
Nahid, A. Al, Mehrabi, M. A. and Kong, Y. (2018)
‘Histopathological breast cancer image classification
by deep neural network techniques guided by local
clustering’, BioMed Research International, 2018. doi:
10.1155/2018/2362108.
Ottoni, A. L. C. et al. (2020) ‘Tuning of reinforcement
learning parameters applied to SOP using the Scott–
Knott method’, Soft Computing. Springer Berlin
Heidelberg, 24(6), pp. 4441–4453. doi: 10.1007/
s00500-019-04206-w.
Perez, L. and Wang, J. (2017) ‘The Effectiveness of Data
Augmentation in Image Classification using Deep
Learning’. Available at: http://arxiv.org/abs/
1712.04621.
Razzak, M. I., Naz, S. and Zaib, A. (no date) ‘Deep
Learning for Medical Image Processing : Overview ,
Challenges and the Future’.
Sadoughi, F. et al. (2018) ‘Artificial intelligence methods
for the diagnosis of breast cancer by image processing:
A review’, Breast Cancer: Targets and Therapy, 10,
pp. 219–230. doi: 10.2147/BCTT.S175311.
Sagi, O. and Rokach, L. (2018) ‘Ensemble learning: A
survey’, Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 8(4), pp. 1–18. doi:
10.1002/widm.1249.
Saha, M., Mukherjee, R. and Chakraborty, C. (2016)
‘Computer-aided diagnosis of breast cancer using
cytological images: A systematic review’, Tissue and
Cell. Elsevier Ltd, 48(5), pp. 461–474. doi:
10.1016/j.tice.2016.07.006.
Saikia, A. R. et al. (2019) ‘Comparative assessment of
CNN architectures for classification of breast FNAC
images’, Tissue and Cell. Elsevier Ltd, 57, pp. 8–14.
doi: 10.1016/j.tice.2019.02.001.
Sakia, A. R. M. (2012) ‘The Box-Cox transformation
technique : a review’, 41(2), pp. 169–178.
Sandler, M. et al. (2018) ‘MobileNetV2: Inverted Residuals
and Linear Bottlenecks’, Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE, pp. 4510–4520. doi:
10.1109/CVPR.2018.00474.
SHARMA, J. et al. (2003) ‘Symbiotic Seed Germination
and Mycorrhizae of Federally Threatened Platanthera
praeclara (Orchidaceae)’, The American Midland