REFERENCES
Chandan Ganesh Bangalore Yogananda, Bhavya R. Shah,
Maryam Vejdani-Jahromi, Sahil S. Nalawade,
Gowtham K. Murugesan, Frank F. Yu, Marco C. Pinho,
Benjamin C. Wagner, Kyrre E. Emblem, Atle Bjørne-
rud, Baowei Fei, Ananth J. Madhuranthakam, and Jo-
seph A. Maldjian “A Fully Automated Deep Learning
Network for Brain Tumor Segmentation” tomogra-
phy.org, volume 6, number 2, June 2020, ISSN 2379-
1381 https://doi.org/10.18383/j.tom.20 19.00026
Oday Ali Hassen, Sarmad Omar Abter, Ansam A. Ab-
dulhussein, Saad M. Darwish, Yasmine M. Ibrahim 4
and Walaa Sheta, “Nature-Inspired Level Set Segmen-
tation Model for 3D-MRI Brain Tumor Detection”,
2021.
Yue Zhao, Xiaoqiang Ren, Kun Hou, Wentao Li, “Recur-
rent Multi-Fiber Network for 3D MRI Brain Tumor
Segmentation”, Symmetry 2021, 13, 320.
https://doi.org/10.3390/sym13020320,https://www.md
pi.com/journal/symmetry
Parvez Ahmad, Hai Jin, Saqib Qamar, Ran Zheng, and
Wenbin Jiang, “Combined 3D CNN for Brain Tumor
Segmentation”, 2020 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR), 978-1-
7281-4272-2/20/, DOI 10.1109/MIPR49039.2020.0
0029,
Hassan A. Khalil, Saad Darwish, Yasmine M. Ibrahim and
Osama F. Hassan, “3D-MRI Brain Tumor Detection
Model Using Modified Version of Level Set Segmen-
tation Based on Dragonfly Algorithm”, Symmetry
2020, 12, 1256; doi:10.3390/sym12081256,
www.mdpi.com/journal/symmetry,
Xue Feng, Nicholas Tustison, Craig Meyer, “Brain Tumor
Segmentation Using an Ensemble of 3D U-Nets and
Overall Survival Prediction Using Radiomic Features”,
Springer Nature Switzerland AG 2019. A. Crimi et al.
(Eds.): BrainLes 2018, LNCS 11384, pp. 279–288,
2019. https://doi.org/10.1007/978-3-030-11726-9_25,
Andriy Myronenko, “3D MRI Brain Tumor Segmentation
Using Autoencoder Regularization, “Springer Nature
Switzerland AG 2019 A. Crimi et al. (Eds.): BrainLes
2018, LNCS 11384, pp. 311–320, 2019.
https://doi.org/10.1007/978-3-030-11726-9 _ 28.
Wei Chen, Boqiang Liu, Suting Peng, Jiawei Sun, and Xu
Qiao, “S3D-UNet: Separable 3D U-Net for Brain
Tumor Segmentation”, Springer Nature Switzerland
AG 2019, A. Crimi et al. (Eds.): BrainLes 2018, LNCS
11384, pp. 358–368, 2019. https://doi.org/10.1007/
978-3-030-11726-9_32.
Xiaojun Hu, Weijian Luo, Jiliang Hu, Sheng Guo, Weilin
Huang, Matthew R. Scott, Roland Wiest, Michael
Dahlweid and Mauricio Reyes, “Brain SegNet: 3D
local refinement network for brain lesion
segmentation”, Hu et al. BMC Medical Imaging, (2020)
20:17, https://doi.org/s12880-020-0409-2.
Li Sun, Songtao Zhang, Hang Chen, Lin Luo, “Brain Tu-
mor Segmentation and Survival Prediction Using Mul-
timodal MRI Scans With Deep Learning”, Frontiers in
Neuroscience, www.frontiersin.org, August 2019, Vol-
ume 13, Article 810.
Dmitry Lachinov, Evgeny Vasiliev, and Vadim Turlapov,
“Glioma Segmentation with Cascaded Unet”, Springer
Nature Switzerland AG 2019, A. Crimi et al. (Eds.):
BrainLes 2018, LNCS 11384, pp. 189–198, 2019,
https://doi.org/10.1007/978-3-030-11726-9, 17.
Ping Liu, Qi Dou, Qiong Wang and Pheng-Ann Heng, “An
Encoder-Decoder Neural Network With 3D Squeeze-
and-Excitation and Deep Supervisionfor Brain Tumor
Segmentation”, IEEE Access 2020, Digital Object
Identifier 10.1109/ACCESS.2020.2973707.
Pawel Mlynarski, Hervé Delingette, Antonio Criminisi, Nich-
olas Ayache, “3D convolutional neural networks for tu-
mor segmentation using long-range 2D context,
https://doi.org/10.1016/j.compmedimag.2019.02.001
0895-6111/, 2019 Elsevier Ltd.
Suting Peng, Wei Chen, Jiawei Sun, Boqiang Liu, “Multi-
Scale 3D U-Nets: An approach to automatic segmenta-
tion of brain tumor”, 2019, Wiley Periodicals, Inc.,
DOI: 10.1002/ima.22368
Mina Ghaffari, Arcot Sowmya, Ruth Oliver, Len Hamey,
“Multimodal brain tumour segmentation using densely
connected 3D convolutional neural network”, 978-1-
7281-3857-2/19/, 2019, IEEE.
Parvez Ahmad, Hai Jin, Saqib Qamar, Ran Zheng, Wenbin
Jiang, Belal Ahmad, Mohd Usama, “3D Dense Dilated
Hierarchical Architecture for Brain Tumor Segmenta-
tion”, 2019, Association for Computing Machinery,
ACM, ISBN 978-1-4503-6278-8/19/05, http://doi.org/
10.1145/3335484.3335516
Shangfeng Lu, Xutao Guo, Ting Ma, Chushu Yang, Tong
Wang, Member, Pengzheng Zhou, “Effective Multipath
Feature Extracion 3D CNN for Multimodal Brain Tu-
mor Segmentation”, 2019 International Conference on
Medical Imaging Physics and Engineering (ICMIPE).
Saqib Qamar, Hai Jin, Ran Zheng, Parvez Ahmad, “3D Hy-
per-dense Connected Convolutional Neural Network
for Brain Tumor Segmentation”, 978-1-7281-0441-
6/18/, DOI 10.1109/SKG.2018.00024.
Jing Huang and Minhua Zheng, Peter X. Liu, “Automatic
Brain Tumor Segmentation Using 3D Architecture
Based on ROI Extraction”, Proceeding of the IEEE In-
ternational Conference on Robotics and Biomimetics,
978-1-7281-6321-5/19/.
Yan Hu, Yong Xia, “3D Deep Neural Network-Based Brain
Tumor Segmentation Using Multimodality Magnetic
Resonance Sequences”, Springer International Publish-
ing AG, part of Springer Nature, 2018. A. Crimi et al.
(Eds.): BrainLes 2017, LNCS 10670, pp. 423–434,
2018. https://doi.org/10.1007/978-3-319-75238-9 _ 36.
Despotovic I., Goossens B., Philips W., MRI segmentation
of the human brain: challenges, methods, and applica-
tions. Computational and mathematical methods in
medicine, 2015.
www.tomography.org