Huang, G. et al. (2017) ‘Densely connected convolutional
networks’, Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017,
2017-Janua, pp. 2261–2269. doi:
10.1109/CVPR.2017.243.
Idri, A. et al. (2020) ‘Assessing the impact of parameters
tuning in ensemble based breast Cancer classification’,
Health and Technology, 10(5), pp. 1239–1255. doi:
10.1007/s12553-020-00453-2.
Idri, A. and Abnane, I. (2017) ‘Fuzzy Analogy Based Effort
Estimation: An Empirical Comparative Study’, IEEE
CIT 2017 - 17th IEEE International Conference on
Computer and Information Technology, (Ml), pp. 114–
121. doi: 10.1109/CIT.2017.29.
Idri, A., Abnane, I. and Abran, A. (2018) ‘Evaluating
Pred(p) and standardized accuracy criteria in software
development effort estimation’, Journal of Software:
Evolution and Process, 30(4), pp. 1–15. doi:
10.1002/smr.1925.
Islam, M. M. et al. (2020) ‘Deep learning algorithms for
detection of diabetic retinopathy in retinal fundus
photographs: A systematic review and meta-analysis’,
Computer Methods and Programs in Biomedicine, 191,
p. 105320. doi: 10.1016/j.cmpb.2020.105320.
Jelihovschi, E. G. and Faria, J. C. (2000) ‘ScottKnott : A
Package for Performing the Scott-Knott Clustering
Algorithm in R’, The R Journal, pp. 1–6.
Kaur, H. et al. (2019) A genetic algorithm-based
metaheuristic approach to customize a computer-aided
classification system for enhanced screen film
mammograms, U-Healthcare Monitoring Systems.
Elsevier Inc. doi: 10.1016/b978-0-12-815370-3.00010-
4.
Kibirige, D. et al. (2019) ‘Understanding the manifestation
of diabetes in sub Saharan Africa to inform therapeutic
approaches and preventive strategies: a narrative
review’, Clinical Diabetes and Endocrinology, 5(1),
pp. 1–8. doi: 10.1186/s40842-019-0077-8.
Lahmar, C. and Idri, A. (2021) ‘On the value of deep
learning for diagnosing diabetic retinopathy’, Health
and Technology 2021, pp. 1–17. doi: 10.1007/S12553-
021-00606-X.
Ottoni, A. L. C. et al. (2020) ‘Tuning of reinforcement
learning parameters applied to SOP using the Scott–
Knott method’, Soft Computing, 24(6), pp. 4441–4453.
doi: 10.1007/s00500-019-04206-w.
Poolsawad, N., Kambhampati, C. and Cleland, J. G. F.
(2014) ‘Balancing class for performance of
classification with a clinical dataset’, Lecture Notes in
Engineering and Computer Science, 1(November), pp.
237–242.
Razzak, M. I., Naz, S. and Zaib, A. (2018) ‘Deep learning
for medical image processing: Overview, challenges
and the future’, Lecture Notes in Computational Vision
and Biomechanics, 26, pp. 323–350. doi: 10.1007/978-
3-319-65981-7_12.
Samreen, R. (2009) ‘Diabetes mellitus’,
Diabetes mellitus,
4(5), pp. 367–373. Available at: http://search.ebs
cohost.com/login.aspx?direct=true&db=cat02024a&A
N=kku.b1289339&site=eds-live&authtype=ip,uid&
scope=cite.
Sandler, M. et al. (2018) ‘MobileNetV2: Inverted Residuals
and Linear Bottlenecks’, Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 4510–4520. doi:
10.1109/CVPR.2018.00474.
Shahin, E. M. et al. (2012) ‘Automated detection of diabetic
retinopathy in blurred digital fundus images’, 2012 8th
International Computer Engineering Conference:
Today Information Society What’s Next?, ICENCO
2012, (May 2014), pp. 20–25. doi:
10.1109/ICENCO.2012.6487084.
Sharma, J. et al. (2003) ‘Symbiotic seed germination and
mycorrhizae of federally threatened Platanthera
praeclara (Orchidaceae)’, American Midland
Naturalist, 149(1), pp. 104–120. doi: 10.1674/0003-
0031(2003)149[0104:SSGAMO]2.0.CO;2.
Simonyan, K. and Zisserman, A. (2015) ‘Very deep
convolutional networks for large-scale image
recognition’, 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track
Proceedings, pp. 1–14.
Szegedy, C. et al. (2016) ‘Rethinking the Inception
Architecture for Computer Vision’, Proceedings of the
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2016-Decem, pp.
2818–2826. doi: 10.1109/CVPR.2016.308.
Szegedy, C. et al. (2017) ‘Inception-v4, inception-ResNet
and the impact of residual connections on learning’,
31st AAAI Conference on Artificial Intelligence, AAAI
2017, pp. 4278–4284.
Wong, K. K. L., Fortino, G. and Abbott, D. (2020) ‘Deep
learning-based cardiovascular image diagnosis: A
promising challenge’, Future Generation Computer
Systems, 110(xxxx), pp. 802–811. doi:
10.1016/j.future.2019.09.047.
Xu, Y. and Goodacre, R. (2018) ‘On Splitting Training and
Validation Set: A Comparative Study of Cross-
Validation, Bootstrap and Systematic Sampling for
Estimating the Generalization Performance of
Supervised Learning’, Journal of Analysis and Testing,
2(3), pp. 249–262. doi: 10.1007/s41664-018-0068-2.
Yau, J. W. Y. et al. (2012) ‘Global prevalence and major
risk factors of diabetic retinopathy’, Diabetes Care,
35(3), pp. 556–564. doi: 10.2337/dc11-1909.
Zerouaoui, H. and Idri, A. (2021) ‘Reviewing Machine
Learning and Image Processing Based Decision-
Making Systems for Breast Cancer Imaging’, Journal
of Medical Systems, 45(1). doi: 10.1007/s10916-020-
01689-1.